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1 Spec and Proj - Ed Segal

Exercises

1. A variety V is called irreducible if it can’t be decomposed as V = V1 ∪ V2 in a non-trivial way. Show
that this is equivalent to (a) any two Zariski open subsets in V intersect, or (b) the ring C[V ] is an
integral domain.

Solution. (a) A decomposition V = V1 ∪ V2 into subvarieties (Zariski closed sets) V1 and V2 is the
same thing as a pair of disjoint Zariski open sets V \ V1 and V \ V2. The decomposition is
non-trivial iff the open sets are non-empty.

(b) If fg = 0 in C[V ] then V = V (f) ∪ V (g), so irreducibility implies one of V (f) or V (g) is V ,
meaning one of f or g is zero. Hence C[V ] is an integral domain if V is irreducible.

If V = V1 ∪ V2 and Vi ̸= V then some polynomial fi vanishes on Vi but not V , otherwise the
equations defining Vi would include all of V . Then f1f2 vanishes on V1 ∪ V2 = V , so C[V ] has
zero-divisors.

2. (a) Show that the Nullstellensatz fails over R by finding a polynomial f such that IV (f) is bigger
than rad(f). Generalize to any non-algebraically-closed field.

(b) Over C or R the ideal IAn is zero. What happens over Fp?

Solution. (a) Let f be a non-constant polynomial with no roots over a non-algebraically closed field,
such as x2 + 1 over R. Then V (f) = ∅ so IV (f) = (1), but 1 /∈ rad(f) as f is non-constant.

(b) Over Fp affine space An has finitely many points, so IAn consists of the polynomials vanishing at
these points, including for example

∏
a1∈Fp

(x1 − a1) = xp1 − x1. We have

IAn(Fp) =
⋂

a1,...,an∈Fp

(x1 − a1, . . . , xn − an)

=
⋂

a2,...,an∈Fp

(xp1 − x1, x2 − a2, . . . , xn − an)

= (xp1 − x1, . . . , xpn − xn).

3. Show that for any hypersurface V (f) ⊂ An, the complement An \ V (f) is isomorphic to an affine
variety.

Solution. Consider the affine variety X = V (xn+1f−1) ⊆ An+1. We have a morphism X → An\V (f)
by projection: (a1, . . . , an+1) 7→ (a1, . . . , an), since an+1f(a1, . . . , an) = 1 implies f(a1, . . . , an) ̸= 0.
This has an inverse given by (a1, . . . , an) 7→ (a1, . . . , an, 1/f(a1, . . . , an)), which is also regular.

4. Prove that every homomorphism C[W ]→ C[V ] is induced from a regular map V →W .

Solution. Suppose V ⊆ An and W ⊆ Am correspond to quotient maps C[x1, . . . , xn] → C[V ] and
C[y1, . . . , ym]→ C[W ]. Choose a lift of C[W ]→ C[V ] and let f1, . . . , fm ∈ C[x1, . . . , xn] be the images
of y1, . . . , ym, as in the following diagram.

C[W ] C[V ]

C[y1, . . . , ym] C[x1, . . . , xn]
f1,...,fm

Then (x1, . . . , xn) 7→ (f1, . . . , fm) is a morphism An → Am, and since IW maps to IV in the diagram, it
restricts to a morphism V →W . Moreover the pullback C[V ]→ C[W ] given by composition with this
map precisely corresponds to substituting f1, . . . , fm for y1, . . . , ym, so from the diagram we recover
the original homomorphism C[W ]→ C[V ].

5. Let R be the ring R = C[x]/(x2). Show that a homomorphism C[V ] → R is exactly the data of a
point p ∈ V and a vector which is tangent to V at p.
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Solution. If φ : C[V ] → C[x]/(x2) we have C[V ] → C[x]/(x2) → C[x]/(x) = C, and the kernel of
this map is a maximal ideal mp = φ−1((x)) ⊆ C[V ] corresponding to a point p ∈ V . Moreover
mp/m

2
p maps to (x)/(x2) = C · x, giving an element of the dual (mp/m

2
p)

∨ of mp/m
2
p considered as a

C[V ]/mp = C-vector space.

Claim 1: The data of a maximal ideal mp ⊆ C[V ] and a functional v ∈ (mp/m
2
p)

∨ determines a unique
homomorphism C[V ]→ C[x]/(x2) respecting the above construction.

Proof: Define C[V ] → C[x]/(x2) by f 7→ f(p) + v(f − f(p))x. This is clearly C-linear, and respects
products since

fg − f(p)g(p) ≡ f(p)(g − g(p)) + g(p)(f − f(p)) mod m2
p;

the difference being (f − f(p))(g − g(p)). By construction the preimage of (x) is mp, and the induced
map mp/m

2
p → (x)/(x2) = C · x is indeed given by v.

Claim 2: The space (mp/m
2
p)

∨ is canonically identified with the tangent space to V at p.

Proof: Inuitively, elements of (mp/m
2
p)

∨ are functionals insensitive to second order vanishing, which
are first order differential operators; differentiation along tangent vectors. Suppose V = V (f1, . . . , fr)
in An. Then the tangent space to V at p should be given by

TpV =

ß
(v1, . . . , vn) ∈ Cn : v1

∂fi
∂x1

(p) + · · ·+ vn
∂fi
∂xn

(p) = 0 for i = 1, . . . , r

™
.

We define ψ : (mp/m
2
p)

∨ → TpV by v 7→ (v(x1 − p1), . . . , v(xn − pn)); evaluating the operator on
coordinates. This is well-defined since

(x1 − p1)
∂fi
∂x1

(p) + · · ·+ (xn − pn)
∂fi
∂xn

(p) ≡ fi mod m2
p,

and fi = 0 in C[V ]. It has an inverse given by

(v1, . . . , vn) 7→
Å
f 7→ v1

∂f

∂x1
(p) + · · ·+ vn

∂f

∂xn
(p)

ã
,

which is well-defined since elements of m2
p map to zero by the product rule, and multiples of f1, . . . , fr

map to zero by the product rule and the fact that (v1, . . . , vn) ∈ TpV . That this is indeed an inverse
follows from the fact that

(x1 − p1)
∂f

∂x1
(p) + · · ·+ (xn − pn)

∂f

∂xn
(p) ≡ f mod m2

p.

6. Let V = V (y2 − x3) ⊂ A2 and let f : A1 → V be the function:

f : t 7→ (t2, t3).

Show that f is not an isomorphism but it is a bijection (and even a homeomorphism in the usual
complex topology).

Solution. The corresponding homomorphism of coordinate rings C[x, y]/(y2 − x3) → C[t] given by
x 7→ t2, y 7→ t3 is not an isomorphism, since C[t2, t3] ⊊ C[t].

However we have a set-theoretic inverse:

(x, y) 7→
®
x/y if y ̸= 0

0 otherwise.

Adjoining a point at infinity to both curves we get compact Hausdorff spaces in the complex topology,
so this inverse is even continuous with respect to the complex topology.

7. Compute the transition functions (i.e. the co-ordinate changes) between the standard affine charts in
P2.

Solution. For U0 ∩ U1 we have [1, x1, x2] = [1/x1, 1, x2/x1], giving (x1, x2) 7→ (1/x1, x2/x1).

For U0 ∩ U2 we have [1, x1, x2] = [1/x2, x1/x2, 1], giving (x1, x2) 7→ (1/x2, x1/x2).

For U1 ∩ U2 we have [x0, 1, x2] = [x0/x2, 1/x2, 1], giving (x0, x2) 7→ (x0/x2, 1/x2).
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8. Find an explicit method to compactify any hypersurface in An to a hypersurface in Pn.

Solution. Suppose f ∈ C[x1, . . . , xn] defines a hypersurface V = V (f) ⊆ An. We obtain a homogeneous

polynomial f̂ ∈ C[x1, . . . , xn+1] by

f̂ = xdeg f
n+1 · f(x1/xn+1, . . . , xn/xn+1),

giving a projective hypersurface in Pn whose intersection with the affine part xn+1 ̸= 0 is V (f). It is
in fact the closure of this affine part in Pn, since substituting xn+1 = 1 and applying this process to a
homogeneous polynomial recovers the original polynomial up to a multiple of xn+1.

9. (a) Let C be the projective curve V (xy − z2) ⊂ P2. Construct a bijection P1 → C.

(b) What does this have to do with traceless 2× 2 matrices of rank 1?

(c) What happens if xy − z2 is replaced with another quadratic form?

Solution. (a) Define a map P1 → C by [s : t] 7→ [s2 : t2 : st]. Now xy = z2 implies [y : z] = [z : x]
when both are defined, so [x : y : z] 7→ [y : z] and [x : y : z] 7→ [z : x] glue to give an inverse
C → P1.

(b) Matrices of rank 1 are non-zero, and the rank is preserved by non-zero scalar multiplication.
Non-zero traceless 2× 2 matrices are parametrized up to scale by P2 as follows:

[x : y : z] 7→
Å
z −x
y −z

ã
,

and the rank is 1 iff the determinant xy − z2 vanishes. Hence C parametrizes rank 1 traceless
2× 2 matrices up to scale. From (a) we also get a parametrization by P1:

[s : t] 7→
Å
st −s2
t2 −st

ã
.

(c) Over C the quadratic forms are determined up to equivalence by rank, so replacing xy − z2 by
a non-degenerate quadratic form results in a curve isomorphic to C ∼= P1. A quadratic form of
rank 2 results in a curve isomorphic to V (xy); two lines, and a quadratic form of rank 1 results
in a curve isomorphic to V (x2); one line (or a scheme-theoretic double line).

Different quadratic forms correspond to different special matrix forms as in (b), for example

x2 + y2 = det

Å
x −y
y x

ã
and

xw − yz = det

Å
x y
z w

ã
.

The latter gives the Segre embedding P1 × P1 → P3, (X1 : X2, Y1 : Y2) 7→ (X1Y1 : X1Y2 : X2Y1 :
X2Y2), whose image is V (XW − Y Z).

10. (a) Consider the complex affine curve Vϵ = V (xy − ϵ) ⊂ A2 for ϵ ∈ C. Convince yourself that (i) for
ϵ ̸= 0 the space Vϵ is a cylinder, and (ii) as ϵ→ 0 one circle in the cylinder collapses, leaving two
discs glued at a point.

(b) What’s the topology of the complex projective plane curve V (xy) ⊂ P2? Now consider a small
perturbation f = xy + ϵg for some quadratic g(x, y, z). What’s the topology of V (f)? Compare
this with Q9.

(c) Now take a cubic plane curve of the form V = V (xyz+ϵh(x, y, z)). Argue that V has the topology
of a torus.

Solution. (a) (i) For ϵ ̸= 0 we have Vϵ ∼= A1 \ {0} via z 7→ (z, ϵ/z), which is (reiθ, ϵr−1e−iθ) in
polar coordinates. This forms a cylinder joining up the two real arcs θ = 0 and θ = π of the
hyperbola, with (x, y) connecting to (−x,−y) via the circle r = |x|.
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(ii) We can parametrize these circles by t = |x|2 − |y|2 = |x|2 − |ϵ|2/|x|2, and the circles with
t > 0 (resp. t < 0) converge to the circles |x| =

√
t on the x-plane (resp. |y| =

√
−t on the

y-plane) as ϵ→ 0, while the circle lying over t = 0 contracts to the point (0, 0).

(b) The curve V (xy) ⊂ P2 is given by gluing two copies V (x) and V (y) of P1 along a single point
V (x, y) = {[0 : 0 : 1]}. Topologically, this is a wedge of two spheres. For a generic quadratic
g, and small ϵ ̸= 0, the quadratic form f = xy + ϵg will be non-degenerate, so V (f) ∼= P1 is a
sphere. The singular gluing point is “smoothed out” so that we get the connected sum of two
spheres instead of the wedge. For some choices of g this doesn’t happen, such as g = xy.

(c) The unperturbed curve V (xyz) is given by three copies V (x), V (y), V (z) of P1, which meet
pairwise at the points V (x, y) = {[0 : 0 : 1]}, V (y, z) = {[1 : 0 : 0]}, V (x, z) = {[0 : 1 : 0]}. For
generic h and small enough ϵ ̸= 0 the curve V (xyz + ϵh) is non-singular, and these wedge points
will have “smoothed out” into connecting tubes between the three spheres, giving a torus.
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2 Poincaré duality - Steven Sivek

Recommended source: Bott & Tu, Differential Forms in Algebraic Topology.

Rough idea

Take a (smooth, oriented) manifoldMn. Compact (smooth, oriented) submanifoldsXk, Y n−k ⊆M intersect
transversely at p ∈ X ∩ Y if we have

TpX ⊕ TpY = ±TpM,

where the sign matches the orientation on the LHS induced from X and Y with the orientation ofM . Write
sgn(p) for this sign, and define the intersection number

i(X,Y ) =
∑

p∈X∩Y

sgn(p).

Claim. This only depends on [X] ∈ Hk(M), [Y ] ∈ Hn−k(M). Hence we get a bilinear form

i :
Hk(M)

torsion
⊗ Hn−k(M)

torsion
→ Z.

(We can mod out by torsion since Z is torsion-free.)

Theorem (Poincaré duality). This form is non-degenerate; if i(X,Y ) = 0 for all Y then X = 0.

Corollary. We have rankHk(M) = rankHn−k(M) for each k.

Suppose dimM = 2m. We get a pairing on Hm(M)/torsion, and this is symmetric or anti-symmetric if m
is even or odd respectively (think about the orientation of TpX ⊕ TpY vs. TpY ⊕ TpX). Then Poincaré
duality says that this pairing is uni-modular ; the matrix representing it in an integral basis has determinant
±1.

The algebraic structure (Hm(M), i) is an invariant of M . When dimM = 4 we define the signature σ(M)
to be the signature of this bilinear form.

Theorem. σ(M) is a complete bordism invariant of oriented 4-manifolds.

Theorem (Donaldson). If M4 is smooth, and iM is negative-definite, then iM is diagonalizable over Z;
given by −I in some integral basis for H2(M).

Theorem (Freedman). There exists a topological manifold M4 with iM = E8, which is negative-definite but
not diagonalizable over Z. Hence M has no smooth structure.

(The form E8 is defined on Z8 by the adjacency matrix for the Dynkin diagram .)

de Rham cohomology

Definition. A k-form on M is a section of ΛkT ∗M . That is, at every point a multilinear alternating form
αp : TpM ⊗ · · · ⊗ TpM︸ ︷︷ ︸

k times

→ R.

The space Ωk(M) of k-forms has extra structure:

• Wedge product ∧ : Ωk(M)⊗ Ωl(M)→ Ωk+l(M)

• Exterior derivative d : Ωk(M)→ Ωk+1(M)

satisfying

• α ∧ β = (−1)|α|·|β|β ∧ α

• d(α ∧ β) = dα ∧ β + (−1)|α|α ∧ dβ (Leibniz rule)

• d2 = 0.

This is the structure of a differential graded algebra, which is nice.

On Rn, these operations are defined as follows:
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• Ωk(Rn) = R · {fdxi1 ∧ · · · ∧ dxik}, where dxi( ∂
∂xj

) = δij .

• (fdxi1 ∧ · · · ∧ dxik) ∧ (gdxj1 ∧ · · · ∧ dxjl) = fgdxi1 ∧ · · · ∧ dxik ∧ dxj1 ∧ · · · ∧ dxjl .

• d(fdxi1 ∧ · · · ∧ dxik) = (
∑

i
∂f
∂xi

dxi) ∧ dxi1 ∧ · · · ∧ dxik .

The general case is defined by patching these together from local coordinate charts.

Definition. A k-form α is closed if dα = 0, and exact if α = dβ for some (k − 1)-form β.

The de Rham cohomology is then

Hk
dR(M) = {closed k-forms}/{exact k-forms} = ker d/ im d.

Example. α ∈ Ω0(M) is a function, and locally dα =
∑

i
∂α
∂xi

dxi, so dα = 0 iff α is locally constant. Hence

H0
dR(M) = R if M is connected.

Example. If k > dimM then Ωk(M) = 0 since ΛkTpM = 0. Hence Hk
dR(M) = 0.

Example. What is H1
dR(R)? Ω1(R) = {fdx : f : R → R} are all closed from above. Exact 1-forms are

given by dF = F ′(x)dx for F : R→ R. Such an F with dF = fdx always exists by the FTC, via

F (x) =

∫ x

0

f(t)dt.

Hence H1
dR(R) = 0.

Remark. By the Leibniz rule, the wedge product descends to cohomology, making H∗
dR(M) a graded-

commutative R-algebra.

Theorem (Stokes’ theorem). If Xk ⊆Mn is a compact submanifold with boundary, and α ∈ Ωk−1(M), we
have ∫

X

dα =

∫
∂X

α.

(Integration of forms is extended from Rn by patching.)

Exercise. Show that there is a bilinear pairing

Hk(M ;R)⊗Hk
dR(M)→ R

given by

[Xk]⊗ [α] 7→
∫
X

α.

(You may use a theorem of Thom, which states that after multiplying by a positive integer, any singular
homology class of a manifold may be represented by a compact submanifold.)

Solution. For a homology class of the form 1
n [X

k] we define the image as

1

n

∫
X

α.

By the theorem of Thom on representability of multiples of homology classes this gives an output for all
elementary tensors. It is well-defined, for if 1

n [X
k] = 1

m [Y k] then their difference is the boundary of some
(k + 1)-chain c, so

1

n

∫
X

α− 1

m

∫
Y

α =

∫
∂c

α =

∫
c

dα

by Stokes’ theorem, which is zero since dα = 0.

Lemma (Poincaré lemma).

Hk
dR(Rn) =

®
R k = 0

0 otherwise.
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Proof. We induct on n. Assume k > 0, and that all closed k-forms on Rn are exact. Consider a closed
form ω ∈ Ωk(Rn+1). Taking coordinates (x, t) on Rn+1 = Rn

x × Rt, we may write ω = αt + dt ∧ βt where

αt ∈ Ωk(Rn) and βt ∈ Ωk−1(Rn) for each t. Define ηt =
∫ t

0
βsds, so that d

dtηt = βt. We have

dηt = dxηt + dt ∧ d

dt
ηt

= dxηt + dt ∧ βt,

so ω − dηt = αt − dxηt. The LHS is closed, so αt − dxηt is a closed form on Rn ×R, and in particular must
be constant in t, given by some form in Ωk(Rn) which is exact by induction. Say αt − dxηt = dxξ, where
ξ ∈ Ωk−1(Rn). Then ω = dηt + dξ is exact, where we pull back ξ to Rn × R as a constant in t.

There is an important variant of de Rham cohomology:

Ωk
c (M) = {compactly supported k-forms}

retains the differential graded algebra structure, and gives rise to compactly supported (de Rham) cohomol-
ogy

Hk
c (M) =

ker(d : Ωk
c (M)→ Ωk+1

c (M))

im(Ωk−1
c (M)→ Ωk

c (M))
.

Remark. If M is compact, then Ωk
c (M) = Ωk(M) and Hk

dR(M) = Hk
c (M).

Example. ker(d : Ω0
c(Rn)→ Ω1

c(Rn)) = {constant compactly supported functions} = 0, so H0
c (Rn) = 0.

Exercise. Prove α ∈ Ω1
c(R) is exact iff

∫
R α = 0. Conclude that H1

c (R) ∼= R.

Solution. If α = df then
∫
R α =

∫
R df = 0 by Stokes’ theorem. Conversely, if

∫
R α = 0 then the function

f(t) =

∫
(−∞,t)

α

is zero for t past the support of α, as well as for t preceding the support of α, so f ∈ Ω0
c(R). By construction

α = df . This shows that integration gives an injection H1
c (R) → R, which is non-zero by the existence of

bump functions, and therefore gives an isomorphism H1
c (R) ∼= R.

Lemma (Poincaré lemma, pt 2).

Hk
c (Rn) =

®
R k = n

0 otherwise.

Poincaré duality

Theorem (Poincaré duality). There is a perfect pairing

Hk
dR(M)⊗Hn−k

c (M)→ R

[α]⊗ [β] 7→
∫
M

α ∧ β.

Equivalently, we have an isomorphism

Hk
dR(M)→ Hn−k

c (M)∗

[α] 7→
∫
M

α ∧ (−).

Proof sketch. Take a good cover of M ; an open cover U = {Ui} such that finite intersections of the Ui are
contractible (or just discs). Induct on |U|.

• |U| = 1: M = Rn so we use the Poincaré lemma; it is easy to check that the pairing is non-zero.

• Inductive step: Write U = U1 ∪ · · · ∪ Un−1, V = Un, and look at the Mayer–Vietoris sequences for
M = U ∪ V in both cohomologies. There are natural comparison maps, which are isomorphisms by
induction on all terms but the M terms. By the five lemma they must also be isomorphisms on M .
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There is a version of Poincaré duality for homology as well. Composing∫
: Hk(M ;R)→ Hk

dR(M)∗

with the isomorphism Hk
dR(M)∗ ∼= Hn−k

c (M) gives

η : Hk(M ;R)→ Hn−k
c (M)

[X] 7→ [ηX ]

satisfying
∫
X
α =

∫
M
α ∧ ηX . The class [ηX ] is called the Poincaré dual of the submanifold X.

Theorem (Poincaré duality). η : Hk(M ;R)→ Hn−k
c (M) is an isomorphism.

When k = n−1, we have an explicit construction for ηX as follows: Xk ⊆Mn has a tubular neighbourhood
N(X) ∼= X× [−1, 1]t. (The normal bundle is trivial since the codimension is 1 and everything is orientable.)
Define ηX ∈ Ω1

c(M) by

(ηX)p =

®
ϕ(t)dt p = (x, t) ∈ N(X)

0 otherwise

where ϕ(t) is a bump function supported on [−1, 1] with total integral 1. Then

• dηX = 0 since d(ϕ(t)dt) = ϕ′(t)d2t = 0, so [ηX ] ∈ H1
c (X) is well-defined.

•
∫
X
α =

∫
X×[−1,1]

α ∧ ϕ(t)dt by Fubini, and this latter integral is just
∫
M
α ∧ ηX .

Hence [ηX ] is the Poincaré dual for X.

The same idea works whenever the submanifold has a trivial normal bundle, but there are complications for
the general case.

Exercise. Show that if Y 1 is transverse to Xn−1 in Mn, then∫
Y

ηX = i(X,Y )

computes the intersection number.

Hint: Work in explicit coordinates near p ∈ X ∩ Y , and use the above construction of ηX .

Solution. The intersection X ∩ Y is a discrete and hence finite subset of Y . We can therefore take a
small enough tubular neighbourhood of X such that near each p ∈ X ∩ Y , the component of Y in this
neighbourhood is parametrised as (x(t), t) ∈ X × [−1, 1] ∼= N(X). The integral

∫
Y
ηX splits up as a sum

over these components, and the integral for the component is∫ ±1

∓1

ϕ(t)dt = ±1

depending on whether the orientation of Y agrees with the positive direction in t or not, since the pullback
of ηX = ϕ(t)dt along t 7→ (y(t), t) is again ϕ(t)dt. This is precisely the definition of sgn(p), so summing up
gives ∫

Y

ηX = i(X,Y ).

Since
∫
Y
ηX =

∫
M
ηX ∧ ηY , we get

i(X,Y ) =

∫
M

ηX ∧ ηY .

Hence the Poincaré duality isomorphism Hk(M ;R)→ Hn−k
c (M) identifies the intersection form (cap prod-

uct) on H∗(M ;R) with the wedge product on H∗
c (M). It is an isomorphism of graded-commutative R-

algebras.
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3 Complex manifolds and the Kähler condition - Lorenzo Foscolo

Notes

Almost-Hermitian geometry

We have three geometric subgroups of GL(2n,R);

• GL(n,C), which is the subgroup preserving the map J0 : R2n → R2n given by multiplication by i
under the identification R2n ∼= Cn, satisfying J2

0 = −1.

• Sp(2n,R), which is the subgroup preserving the standard non-degenerate 2-form ω0 = dx1 ∧ dy1 +
· · ·+ dxn ∧ dyn in coordinates (x1, y1, . . . , xn, yn).

• SO(2n), which is the subgroup preserving the standard Riemannian metric g0 = dx21 + · · ·+ dx22n and
the standard volume form dvol0 (i.e. the standard orientation).

It turns out that the pairwise intersections coincide:

GL(n,C) ∩ Sp(2n,R) = GL(n,C) ∩ SO(2n) = Sp(2n,R) ∩ SO(2n),

all being the unitary group U(n) = {A : AA∗ = 1}. Moreover, any two of the three structural objects
J0, ω0, g0 determine the third via the equation g0(·, ·) = ω0(·, J0(·)).

Definition. Let M2n be any smooth manifold.

• An almost-complex structure J onM is a bundle map J : TM → TM such that J2 = −1. Equivalently,
for every x ∈M an identification (TxM,Jx) ∼= (R2n, J0).

• An almost-symplectic form ω on M is a non-degenerate 2-form ω ∈ Ω2(M). Equivalently, for every
x ∈M an identification (TxM,ωx) ∼= (R2n, ω0).

• A Riemannian metric on M is a positive-definite symmetric bilinear form g ∈ C∞(M,S2(T ∗M)).
Equivalently, for every x ∈M an identification (TxM, gx) ∼= (R2n, g0).

An almost-Hermitian structure on M is a tuple of the above structures (J, ω, g) which are compatible in
the sense that g(·, ·) = ω(·, J(·)) holds.

Integrable almost-complex structures

IfM2n is a complex manifold, i.e. has a holomorphic atlas, then we get an almost-complex structure J from
multiplication by i in holomorphic coordinates. Which almost-complex structures arise in this way?

Definition. If (M,J) is an almost-complex manifold, then we write

TM ⊗ C = T 1,0M ⊕ T 0,1M

for the decomposition of TM⊗C into the i-eigenspace T 1,0M and the (−i)-eigenspace T 0,1M of J . Similarly,
we write

T ∗M ⊗ C = Λ1,0T ∗M ⊕ Λ0,1T ∗M,

and for u ∈ Ω0(M,C) a complex-valued smooth function we write

du = ∂u⊕ ∂̄u

for the decomposition of du in this decomposition of T ∗M ⊗C. Such a function is J-holomorphic if ∂̄u = 0.
From plugging this decomposition into Λ2T ∗M ⊗ C we get

Λ2T ∗M ⊗ C = Λ2,0T ∗M ⊕ Λ1,1T ∗M ⊕ Λ0,2T ∗M,

and for α ∈ Ω0,1(M) we write
dα = d2,−1α⊕ ∂α⊕ ∂̄α

for this decomposition of dα.

Fact. We have that d2,−1α = −NJ(α) is “tensorial in α”; here NJ is the Nijenhuis tensor of J , which
is a bundle map on M . This means d2,−1α does not involve differentiation of the functions defining α in
coordinates.
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Remark. If J comes from a complex structure then NJ = 0, since

d(f(z, z̄)dz̄i) = ∂f ∧ dz̄i + ∂̄f ∧ dz̄i.

Theorem (Newlander–Nirenberg, 1957). An almost-complex structure J comes from a complex structure
iff NJ = 0. In this case we say that it is integrable.

Example.

• For S2 ⊆ R3, we can identify

TuS
2 ∼= ⟨u⟩⊥ ⊆ R3 ∼= ℑ(H) = {purely imaginary quaternions}.

Then let
Ju(v) = u× v = u · v

with the latter product as quaternions. This defines an almost-complex structure, and NJ = 0 for
dimension reasons, so it is integrable. It is the almost-complex structure induced by the standard
complex structure of the Riemann sphere.

• Similarly, identifying R7 with the purely imaginary octonions ℑ(O) we get an almomst complex-
structure Ju(v) = u · v on S6 ⊆ R7. This is not integrable, due to non-associativity of the octonion
product.

Symplectic and Kähler manifolds

Definition. An almost-symplectic form ω on M2n is symplectic if dω = 0. Then we have a cohomology
class [ω] ∈ H2

dR(M), and if M is compact then [ω] ̸= 0, since ωn is a volume form.

Theorem (Darboux theorem). If ω is a symplectic form, then near every point we have a coordinate chart
φ such that ω = φ∗ω0.

Theorem (Moser stability theorem). If M is compact and ωt is a smooth 1-parameter family of symplectic
forms on M satisfying [ωt] = [ω0] for all t, then there exists a smooth 1-parameter family of diffeomorphisms
φt :M →M such that φ∗

tωt = ω0.

Proof Idea. We have ωt = ω0 + dγt for a family of 1-forms γt. Now ωt gives an isomorphism TM → T ∗M ,
v 7→ ivωt = ωt(v, ·). Applying this isomorphism to γt gives a family of vector fields Xt, and we obtain φt

from the flows of these vector fields.

Definition. An almost-Hermitian manifold (M,J, ω, g) is Kähler if J is integrable and ω is symplectic. In
this case we might call ω a Kähler form on M .

Remark. Where does g come in to this definition? If ∇g is its Levi-Civita connection, we get a holonomy
group Hol(g) ≤ O(2n), and the Kähler condition is equivalent to Hol(g) ≤ U(n).

Example.

• CPn with the standard Complex structure has the Fubini–Study Kähler form ωFS (or the Fubini–Study
metric gFS) induced from the standard structure on Cn \ {0} by the quotient map.

• Any holomorphic submanifold X ⊆ CPn by restriction also has a Kähler form. (Non-degeneracy of
the restricted form is non-obvious, although using the equivalent condition on the Riemannian metric
this is clear.)

• Complex tori Cn/Λ are Kähler as induced from Cn, but are not complex projective manifolds.

• The Hopf surface: for s ∈ R\{0} we have an action of Z on C2 \{0} where n ∈ Z acts as multiplication
by ens. The quotient is a complex manifold which does not admit a symplectic form, since it is
diffeomorphic to S1 × S3 which is compact but has zero cohomology in degree 2.

• The Kodaira–Thurston manifold: we have an action of Z2 on R2 × T 2 where T 2 is the 2-torus, where
(n,m) acts by translation on R2 and by Å

1 n
0 1

ã
∈ SL(2,Z)

on T 2. The quotient is a symplectic manifold, since the group action preserves the sypmplectic
structure, but it does not admit a compatible and integrable almost-complex structure.
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Rough reason why. If M is Kähler, then we get ∂̄2 = 0 because NJ = 0, which gives a cochain
complex to compute Dolbeault cohomology Hp,q

∂̄
(M). If M is closed, then

Hp,q

∂̄
(M) = Hq,p

∂̄
(M)

and
Hk

dR(M,C) =
⊕

p+q=k

Hp,q

∂̄
(M),

proved via harmonic representatives of cohomology classes. This is Hodge theory for compact Kähler
manifolds. As a result, we get that b1(M) is even, but for the above manifold in fact b1 = 3.

Holomorphic bundles and Chern connections

Definition. Suppose (M,J) is a complex manifold, and E →M is a complex vector bundle (i.e. a smooth
finite-rank C-linear bundle). A connection on E is a C-linear map ∇ : C∞(M,E) → C∞(M,T ∗M ⊗ E)
satisfying the Leibniz rule

∇(f · s) = df ⊗ s+ f∇s
for f ∈ C∞(M,C) and s ∈ C∞(M,E).

Remark. In a local trivialization E|U ∼= U × Cr we have

∇s = ds+As

for a matrix A ∈ C∞(U,Mn(T
∗M)) of 1-forms.

Definition. If E has a Hermitian metric h, then ∇ is unitary if ∇h = 0, where we have extended ∇ to the
tensor powers of E. In a local trivialization, this is equivalent to having ∇ = d+ A where A ∈ Ω1(U, u(r))
is a skew-Hermitian matrix of 1-forms (u(r) is the Lie algebra of U(r)).

Definition. A Dolbeault operator (or Cauchy–Riemann operator) is a C-linear map ∂̄E : C∞(M,E) →
C∞(M,Λ0,1T ∗M ⊗ E) satisfying the Leibniz rule

∂̄E(f · s) = df ⊗ s+ f∂̄Es

for f ∈ C∞(M,C) and s ∈ C∞(M,E). In a local trivialization this is given by ∂̄E = ∂̄ + A for a matrix of
1-forms A. We can then define holomorphic sections of E to be those in the kernel of ∂̄E .

Proposition. In the above setup with a Hermitian metric h and a Dolbeault operator ∂̄E , there is a unique
unitary connection ∇ such that ∇0,1 = ∂̄E , where ∇0,1 comes from the projection T ∗M → Λ0,1T ∗M .

Proof. Locally ∂̄E = ∂̄ + A, so we must define ∇ = d + A + A∗, where A∗ denotes the matrix obtained by
conjugating (0, 1)-forms to get (1, 0)-forms and then transposing.

Theorem. In the above setup with a Dolbeault operator ∂̄E , we have that ∂̄E comes from a holomorphic
structure on E iff ∂̄2E = 0.

References

• J.-P. Demailly, Complex Analytic and Differential Geometry, Sections V.1-7, VIII.8

• A. Cannas da Silva, Lectures on symplectic geometry, Chapters 6-8 and 12-17

• S. Donaldson and P. Kronheimer, The geometry of 4-manifolds, Sections 2.1.5 and 2.2

Exercises

Exercise 1 (More linear algebra). Let V be a finite-dimensional vector space endowed with a positive
definite symmetric bilinear form g0.

(i) Show that A 7→ g0(A, ·) defines an isomorphism between the vector space so(V, g0) of skew-symmetric
endomorphisms of (V, g0) (i.e. endomorphisms A : V → V such that g0(Au, v) = −g0(u,Av) for all
u, v ∈ V ) and Λ2V .

(ii) Show that ω0 is the image of J0 under the isomorphism defined above.

(iii) Deduce that any two of g0, J0, ω0 determine the third one and that U(n) = SO(2n) ∩ GL(n,C) =
SO(2n) ∩ Sp(2n,R).
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Exercise 2 (The Nijenhuis tensor). Let J be an almost complex structure on M .

(i) Verify that d2,−1 is tensorial, i.e. d2,−1(fα) = fd2,−1α for any function f and (0, 1)-form α. Deduce
the existence of the Nijenhuis tensor NJ , i.e. the existence of a section NJ of Hom(Λ0,1T ∗M,Λ2,0T ∗M)
such that d2,−1α = −NJ(α) for every (0, 1)-form α.

(ii) Under the isomorphism

Hom(Λ0,1T ∗M,Λ2,0T ∗M) ≃
(
Λ0,1T ∗M

)∗ ⊗ Λ2,0T ∗M ≃ T 0,1M ⊗ Λ2,0T ∗M

identify NJ with the skew-symmetric map NJ : T 1,0M × T 1,0M → T 1,0M defined by NJ(X,Y ) =
[X,Y ]1,0.

(Hint: use the fact that dα(X,Y ) = X · α(Y ) − Y · α(X) − α
(
[X,Y ]

)
for every 1-form α and vector

fields X,Y .)

Exercise 3 (The Newlander–Nirenberg Theorem). In this exercise you discuss some easy aspects of the
proof of the Newlander–Nirenberg theorem.

(i) Show the easy implication of the Newlander–Nirenberg theorem: if J is induced by a holomorphic
atlas then J must be integrable.

(ii) Show that the converse “hard” implication amounts to showing that, assuming J is integrable, for every
point p ∈ M there exists an open set U ⊂ M containing p and J-holomorphic functions z1, . . . , zn :
U → C such that (z1, . . . , zn) : U → Cn is a diffeomorphism onto its image.

Exercise 4 (Almost-complex structures on spheres). In this exercise you construct almost complex struc-
tures on S2 and S6. The latter is non-integrable and deciding whether S6 carries an integrable almost complex
structure is a famous open problem. It can be shown (Borel–Serre, 1953) that spheres of dimensions ̸= 2, 6
cannot carry almost complex structures.

(i) Let S2 denote the unit sphere S2 = {x ∈ R3 : ∥x∥ = 1} in R3. Given x ∈ S2 identify TxS2 with the
plane x⊥ ⊂ R3. Show that the formula

Jx(u) = x× u,

where × denotes the cross product in R3, defines an almost complex structure on S2. Show that this
almost complex structure is integrable.

(Hint: you can answer the last question without doing any computation.)

(ii) The existence of the octonions O implies the existence of a cross product on R7 = ℑO, a bilinear
alternating map × : R7 × R7 → R7 with the properties that u × v is orthogonal to u and v and has
norm |u×v|2 = |u|2|v|2−(u ·v)2. One simply sets u×v = ℑ(uv), where uv is octonionic multiplication.
Show that the formula of part (i) defines an almost complex structure J on the 6-sphere S6 and that
the non-associativity of the 7-dimensional cross product makes J non-integrable.

Exercise 5 (Moser’s trick). In this exercise you prove the Moser stability theorem.

(i) We begin with some observations about time-dependent vector fields. Let ψ : [0, 1] ×M → M be a
smooth map such that ψt = ψ(t, ·) : M → M is a diffeomorphism for every t. Define a 1-parameter
family of vector fields {Xt}t∈[0,1] onM by Xt = d(t,·)ψ

(
d
dt

)
. Conversely, ifM is closed (or if the vector

fields are compactly supported) a family of vector fields {Xt}t∈[0,1] generates a family {ψt}t∈[0,1] of

diffeomorphisms with d
dtψt = Xt ◦ ψt and ψ0 = id. Let {αt}t∈[0,1] be a smooth 1-parameter family of

k-forms on M . Show that
d

dt
ψ∗
t αt = ψ∗

t

Å
d

dt
αt + LXtαt

ã
.

(ii) Let {ωt}t∈[0,1] be a smooth family of symplectic forms and suppose that d
dtωt = dµt for a smooth family

{µt}t∈[0,1] of 1-forms. Construct a family {Xt}t∈[0,1] of vector fields such that LXt
ωt +

d
dtωt = 0.

(Hint: recall Cartan’s magic formula LXα = d(X⌟α) +X⌟dα.)

(iii) Deduce Moser’s stability theorem from parts (i) and (ii).
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(iv) Let (M,J) be an almost complex manifold and suppose that ω0 and ω1 are two symplectic forms on
M compatible with J . Show that ωt = (1− t)ω0+ tω1 is a family of symplectic forms compatible with
J .

(Hint: consider the corresponding family of Riemannian metrics using the fact that the set of positive
definite bilinear forms on Rn is convex.)

(v) Let (M, g0, J0, ω0) be an almost Hermitian manifold with ω0 symplectic (such manifolds are sometimes
called almost Kähler). Consider the sets

J (ω0) = {ω0-compatible almost complex structures J},
H(J0, [ω0]) = {J0-compatible symplectic forms ω with [ω] = [ω0] ∈ H2

dR(M)}

and the subset Y(J0, ω0) ⊂ Diff0(M)×H(J0, [ω0]) consisting of pairs (f, ω) where f is a diffeomorphism
isotopic to the identity such that f∗ω = ω0. Use parts (iii) and (iv) to construct a map Φ : Y(J0, ω0)→
J (ω0).

Exercise 6 (Projective manifolds). In this exercise you show that complex projective space CPn and its
holomorphic submanifolds are Kähler.

(i) Show that ωFS = i∂∂̄ log(1 + |z|2) is a Kähler form on Cn. Here |z|2 = |z1|2 + · · ·+ |zn|2.

(ii) Show that if φ(z1, . . . , zn) = z−1
1 (z1, z2, . . . , zn) then φ

∗ωFS = ωFS.

(iii) Show that the charts (Ui, φi) defined by

φi : Ui =
{
[z0 : · · · : zn] : zi ̸= 0

}
→ Cn, φi([z0 : · · · : zn]) = z−1

i (z0, . . . , ži, . . . , zn),

where ži means that we drop the ith coordinate, form a holomorphic atlas on CPn.

(iv) Show that the formula ω = φ∗
iωFS over Ui defines a Kähler form on CPn, called the Fubini–Study

Kähler form.

(v) Let M be a complex submanifold of CPn. Show that M is Kähler.

Exercise 7 (Hopf surface). In this exercise you show that there are complex manifolds that cannot be
Kähler.

(i) Let (M,ω) be a closed symplectic manifold. Show that the de Rham cohomology class [ω] ∈ H2
dR(M)

cannot vanish.

(ii) Fix a real number s ̸= 0 and let Z act on C2\{0} by n·(z1, z2) = (ensz1, e
nsz2). DefineM4 = C2\{0}/Z.

Show that M is a complex manifold.

(iii) Show that M is diffeomorphic to S1 × S3 and conclude that M cannot be Kähler.

(Hint: work in spherical coordinates in C2 \ {0} ≃ R+ × S3.)

Exercise 8 (Kodaira–Thurston manifold). In this exercise you show that there are symplectic manifolds
that cannot be Kähler.

(i) Show that if (M, g, J, ω) is a closed Kähler manifold then H1(M ;R) is even dimensional.

(ii) Let (n,m) ∈ Z2 act on R2 by translation (x, y) 7→ (x+ n, y +m) and on T2 via the matrix

Å
1 n
0 1

ã
∈

SL(2,Z). Let M be the 4-manifold M = (R2 × T2)/Z2. Show that the standard symplectic form on
R2 × T2 descends to M and defines a symplectic form on M .

(iii) Calculate the first de Rham cohomology group of M and conclude that M cannot carry any Kähler
structure.

(Hint: you can either study Z2-invariant closed 1-forms on R2×T2 or calculate the fundamental group
of M , thus its first homology, and then use the fact that de Rham cohomology is dual to homology with
real coefficients.)
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Exercise 9 (Hyperkähler 4-manifolds). A hyperkähler triple on a 4-manifold is a triple (ω1, ω2, ω3) of
symplectic forms satisfying

ωi ∧ ωj = δij
1

3
(ω2

1 + ω2
2 + ω2

3).

1. Work on R4 with coordinates (x0, x1, x2, x3). Show that the forms

ωi = dx0 ∧ dxi + dxj ∧ dxk,

where (ijk) is a cyclic permutation of (123), define a hyperkähler triple. Show also that you can
identify R4 with the quaternions H so that the almost complex structures corresponding to ω1, ω2 and
ω3 using the standard inner product on R4 as in Exercise 1 are, respectively, left multiplications by i,
j and k.

2. Let (M4, ω1, ω2, ω3) be a manifold endowed with a hyperkähler triple. Write ω = ω1 and ωc = ω2+iω3.
Show that ωc ∧ ωc = 0 and deduce the existence of an almost complex structure J for which a 1-form
α is of type (1, 0) if and only if α ∧ ωc = 0.

(Hint: you can use the fact that ωc ∧ ωc = 0 if and only if ωc is decomposable, i.e. it can locally be
written as ωc = θ1 ∧ θ2 for linearly independent complex 1-forms θ1, θ2.)

3. Show that J is integrable.

(Hint: observe that dωc = 0 and differentiate the relation α ∧ ωc = 0 valid for any (0, 1)-form α to
deduce that d2,−1α = 0.)

4. Show that (ω, J) are compatible and that, denoting by g the resulting metric, (M, g, J, ω) is Kähler.

(Hint: show that ω ∧ ωc = 0 and deduce that ω is of type (1, 1) with respect to J . Positivity of
the resulting metric can be shown by arguing that on each tangent space ω1, ω2, ω3 must be linearly
equivalent to the hyperkähler triple of part (i).)

Exercise 10 (Bundles and connections). This problem is a collection of three separate questions about
holomorphic bundles and connections.

(i) Show that any choice of Cauchy–Riemann operator on a complex vector bundle E over a Riemann
surface defines a holomorphic structure on E.

(ii) Let (E, h) be a Hermitian vector bundle over a complex manifold and let ∇ be a unitary connection
on E. Decompose the bundle-valued 2-form F∇ into (p, q)-types: F∇ = F 2,0

∇ +F 1,1
∇ +F 0,2

∇ . Show that

∂̄E = ∇0,1 satisfies ∂̄E ◦ ∂̄E = 0 if and only if F∇ = F 1,1
∇ .

(iii) Set OCPn(−1) = {([z], v) ∈ CPn × Cn+1 : v ∈ Cz}.

(a) Show that the projection onto the first factor induces on OCPn(−1) the structure of a holomorphic
line bundle over CPn.

(b) Endow Cn+1 with its standard Hermitian metric and denote by h the induced Hermitian metric
on OCPn(−1). Calculate the curvature of its Chern connection.
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4 Chern classes and classifying spaces - Richard Thomas

Characteristic classes. These measure how “twisted” a vector bundle is. For real vector bundles we
have the Stiefel–Whitney and Pontryagin classes; for complex vector bundles the Chern classes. They have
versions in topology, differential geometry, algebraic geometry, sheaf theory, number theory, e.t.c. and it is
important to understand the links between the different versions.

Vector bundles. A rank r complex vector bundle E → X over a topological space X is a family of vector
spaces ∼= Cr “continuously varying” over X. This is the data of:

• A topological space E with a continuous map π : E → X.

• (Local triviality) For each x ∈ X an open neighbourhood U ⊆ X over which E is isomorphic to the
“trivial” or product bundle:

E|U = π−1(U) U × Cr

X
π

gU
∼

(x,v) 7→x

Here gU is a homeomorphism making the diagram commute, called a local trivialization.

• (Compatibility on overlaps) Any pair of local trivializations gU , gV give a transition function

gUV = gU |U∩V ◦ gV |−1
U∩V ,

which associates to each point in U ∩ V a homeomorphism Cr → Cr. We require this to be given by
linear isomorphisms in a continuous way, i.e. gUV is given by a continuous map U ∩ V → GL(r,C).

Möbius band. This is an example of a real bundle over the circle S1. Take [0, 1]×R/ ∼ where we identify
(0, e) ∼ (1,−e), as in the following figure.

Exercise. Check that this defines a vector bundle, by seeing that on an actual open cover of S1 we have
local trivializations and transition maps, as in the following figure.

Solution. With the indicated open cover S1 = U∪V the intersection U∩V is a disjoint union of two intervals.
We glue by id on one interval and −id on the other. This is a locally constant association U ∩V → GL(1,C),
which is hence continuous.

Exercise. If instead of one twist we include two twists, show that the resulting bundle is trivial. Further,
show that it can be untwisted to the standard band if embedded in R4.

Solution. If we take two trivializations, where the two twists are contained in one of them, then on the two
components of the overlap we glue by id and −(−id) = id, so the trivializations glue to a global trivialization.
In fact triviality is a consequence of the second part. For the second part, note that if we replace one twist
of the double-twisted band by the reverse oriented twist, then the band can be untwisted to the standard
band inside R3:
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Hence it suffices to show that in R4 a twist can be reversed. Given a twist embedded in R3 × {0} ⊆ R4 as
pictured below, we can achieve this by:

• Perform a straight line isotopy so that the 4th coordinate x4 is equal to the 2nd coordinate x2.

• Perform a straight line isotopy to replace x2 by −x2. This leads to no self-intersections since the
original coordinates can be recovered as (x1, x4, x3).

• Perform a straight line isotopy returning x4 to zero. This leads to no self-intersections since the original
coordinates can be recovered as (x1,−x2, x3).

Now we may think of E as
∐

U (U × Cr)/ ∼, where we glue by the transition functions gUV ; for x ∈ U ∩ V
we identify

V × Cr ∋ (x, e) ∼ (x, gUV (x)e) ∈ U × Cr.

Exercise. Check that this defines an equivalence relation, and that the quotient is E.

Solution. It is an equivalence relation:

• Reflexive: (x, e) ∼ (x, gUU (x)e) = (x, e) as gUU (x) = id.

• Symmetric: (x, gUV (x)e) ∼ (x, gV U (x)gUV (x)e) = (x, e) as gV U (x) ◦ gUV (x) = id.

• Transitive: (x, e) ∼ (x, gWV (x)e) = (x, gWU (x)gUV (x)e) as gWV = gWU ◦ gUV .

We then have a natural map
∐

U (U × Cr)/ ∼→ E by the universal property of the quotient, which is a
homeomorphism over each U , and a bijection, and therefore a global homeomorphism.

Exercise. Show that the fibres of π are naturally vector spaces: if x1 = (x, e1) and x2 = (x, e2) are points
of the same fibre Ex = π−1(x) and α, β ∈ C we can define αx1 + βx2 ∈ Ex such that...

Solution. In a local trivialization we can take these vector space operations to be the natural ones on Cr

under the canonical identification {x} × Cr ∼= Cr. This is independent of the choice of local trivialization
since the vector space operations are preserved by the transition maps in GL(r,C).

Exercise. Define smooth vector bundles over a smooth manifold, algebraic vector bundles over algebraic
varieties, real vector bundles, e.t.c.
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Solution. For a smooth vector bundle we require the map U ∩V → GL(r,C) to be smooth. For an algebraic
vector bundle we take local trivializations of the form π−1(U) ∼= U × Ar, and require U ∩ V → GL(r,C) to
be a regular morphism. For real vector bundles we replace C by R.

Sections. A section of π : E → X is a continuous map s : X → E such that π ◦ s = idX . They form a
vector space Γ(E) by the fibre-wise vector space operations.

Exercise. A trivialization of the bundle, i.e. an isomorphism

E X × Cr

X X

π

∼

(x,v)7→x

is the same thing as a choice of r sections s1, . . . , sr which form a basis at every point, i.e. s1(x), . . . , sr(x) is
a basis of Ex for every x ∈ X. Hence a trivialization of a line bundle is the same thing as a nowhere-vanishing
section.

Solution. On a trivial vector bundle X ×Cr we have a canonical choice of r sections forming a basis of each
fibre given by the basis vectors in Cr; every fibre is canonically identified. We can then transport this along
the isomorphism E ∼= X×Cr to get such sections for E. Conversely, given such sections for E we can define
an isomorphism E ∼= X × Cr by taking coordinates in Cr using the basis on each fibre.

Homotopy invariance. We have

• Fact 1: Homotopic bundles are isomorphic. Given E → X × [0, 1], writing Et = E|X×{t} we have
E0
∼= E1.

• Fact 2: Bundles on contractible spaces X are trivial. If X ≃ {∗} then any bundle E → X is
isomorphic to X × Cr.

For proofs using the Tietze extension theorem see Atiyah’s K-Theory.

So given a rank r bundle E → Sn, we know that restricted to either hemisphere it is trivial,

Sn = Bn
1 ∪Bn

2 , E|Bn
i

∼= Bn
i × Cr.

These restrictions are glued over the boundary ∂Bn
i
∼= Sn−1 by a map Sn−1 → GL(r,C). (Strictly speaking

we should take slightly larger open hemispheres, intersecting in an open annulus which contracts to this
boundary.)

Clutching construction. So rank r complex bundles on Sn are in 1-1 correspondence with homotopy
classes of maps Sn−1 → GL(r,C), i.e. with

πn−1(GL(r,C)).

E.g. real version with r = 1 gives

{line bundles on S1} ↔ π0(GL(1,R)) = π0(R×) = Z/2.

(Note that this isn’t exactly an example of the previous discussion, since here the group is disconnected.)
This mod 2 integer is the Stiefel–Whitney class of the bundle.

First Chern class. E.g. complex version with r = 1 gives

{line bundles on S2} ↔ π1(GL(1,C)) = π1(C×) = Z.

This integer classifying the bundle is called its first Chern class, c1. For an algebraic version, write

S2 ∼= P1 = Cx ∪C× Cy

glued over C× = {x ̸= 0} = {y ̸= 0} by x = 1
y . Then glue trivial line bundles Cx × C and Cy × C by

(x, t) 7→
Å
1

x
, x−nt

ã
= (y, ynt).

We call the resulting line bundle O(n) with c1 = n.
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Tautological bundle. When n = −1 we get the tautological bundle O(−1) → P1. Over R this is the
Möbius bundle on RP1 ∼= S1:

Tautological bundle over C. Over C we also see that O(−1) (defined as above with transition function
1
x ) is the tautological bundle O(−1) over P1.

We can check that the section sx when viewed over Cy does not extend continuously over the origin, so it
doesn’t give a trivialization of the whole bundle.

Zeros of sections. The O(n) line bundle over P1 was defined with transition function x−n, gluing the
section 1 over Cx to x−n = yn over Cy. This therefore defines a global holomorphic section of O(n) when
n ≥ 0, with a degree n zero at y = 0. (If n < 0 we get a meromorphic section with a degree n pole at y = 0.)

Similarly p(x) over Cx is glued to ynp(y−1) over Cy, so if deg p = n we get another algebraic/regular section
over P1. (This gives all the sections since Γ(O(n)) = Symn(C2)∗.) Again these all have n zeros.

Exercise. When n < 0 we get a meromorphic section with n poles. Instead glue 1 to an anti-holomorphic
function across the circle |x| = 1 to give a (non-holomorphic) section with n zeros.

Solution. We can glue 1/zn outside the unit circle to zn inside the unit circle, since they agree on the
boundary. (If |z| = 1 then 1/z = z.)
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Intersection with the zero section. Indeed c1 = n is the number of zeros (counted with orientation
and multiplicity) of any section of O(n). In other words, c1(L) is the intersection of the zero section of L
with itself (or equivalently with the graph of any other section).

Clutching construction on arbitrary Riemann surfaces. Again line bundles are trivial bundles glued
across circles / annuli.

c1(L) = total winding number of transition functions

= number of zeros of a section.

(So under the line bundle ↔ divisor correspondence, c1(O(D)) = degD.)

First Chern class on manifolds. More generally for any complex line bundle L on a manifold M we
define

c1(L) = [s−1(0)] ∈ HdimX−2(X)

where s is any section transverse to the zero section. (If s′ is another choice then we have a homotopy
st = (1− t)s+ ts′ so that s−1

t (0) is a chain interpolating from s to s′.)

In fact we can define c1(L) to be the Poincaré dual of [s−1(0)], as this cohomology class will generalize
to arbitrary topological spaces X. For general X we can understand c1(L) ∈ H2(X) by evaluating it on
[Σ] ∈ H2(X) for Riemann surfaces Σ ↪→ X, by

⟨c1(L), [Σ]⟩ = c1(L|Σ).

Higher Chern classes on manifolds. For any rank r complex vector bundle E → X pick a transverse
C∞-section s and define the Euler class or top Chern class

e(E) = cr(E) = [s−1(0)] ∈ HdimX−2r(X) ∼= H2r(X).
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Analogously define
ck(E) ∈ H2k(X)

to be Poincaré dual to the locus where r − k + 1 generic sections fail to be linearly independent:

[(s1 ∧ · · · ∧ sr−k+1)
−1(0)] ∈ HdimX−2(X).

So cr(E) = e(E) while c1(E) = c1(Λ
rE) and ci(E) = 0 for i > r. (When k ̸= 1, r note that ck(E) ̸=

e(Λr−k+1E)—this has the wrong degree, and s1 ∧ · · · ∧ sr−k+1 is not a generic section of Λr−k+1E.)

Whitney sum formula. Given two generic sections s1 ∈ Γ(E1), s2 ∈ Γ(E2) where Ei has rank ri, we get
a section s1 ⊕ s2 ∈ Γ(E1 ⊕ E2), with

e(E1 ⊕ E2) = [(s1 ⊕ s2)−1(0)] = [s−1
1 (0) ∩ s−1

2 (0)] = e(E1) ∪ e(E2) ∈ H2r1+2r2 .

In particular, for line bundles c2(L1 ⊕ L2) = c1(L1) ∪ c1(L2) and

c1(L1 ⊕ L2) = c1(Λ
2(L1 ⊕ L2))

= c1(L1 ⊗ L2)

= [(s1 ⊗ s2)−1(0)]

= [s−1
1 (0) ∪ s−1

2 (0)]

= c1(L1) + c1(L2).

We can write this as c(L1 ⊕ L2) = c(L1) ∪ c(L2) where the total Chern class is defined as

c(E) = 1 + c1(E) + c2(E) + · · · ∈ H∗(X).

More generally, for bundles E,F of rank r, s use the decomposition

Λk(E ⊕ F ) =
k⊕

i=0

Λi(E)⊗ Λk−i(F )

and generic sections e1, . . . , ek ∈ Γ(E) and f1, . . . , fk ∈ Γ(F ) to compute[(
(e1 ∧ · · · ∧ ek)⊕ (e1 ∧ · · · ∧ ek−1 ⊗ fk)⊕ · · ·

⊕ (e1 ⊗ f2 ∧ · · · ∧ fk)⊕ (f1 ∧ · · · ∧ fk)
)−1

(0)
]
.

Exercise. Work it out and take Poincaré duals to give

cr+s−k+1(E ⊕ F ) = cr(E)cs−k+1(F ) + · · ·+ cr−k+1(E)cs(F ).

Deduce the Whitney sum formula c(E ⊕ F ) = c(E)c(F ).

Solution. For the given definition of cr+s−k+1(E⊕F ), we take generic sections e1⊕f1, . . . , ek⊕fk of E⊕F ,
and consider their wedge product. Under the decomposition Λk(E ⊕ F ) =

⊕k
i=0 Λ

i(E) ⊗ Λk−i(F ) this is
given by

(e1 ⊕ f1) ∧ · · · ∧ (ek ⊕ fk) = (e1 ∧ · · · ∧ ek)⊕ (e1 ∧ · · · ek−1 ⊗ fk)⊕ · · ·
⊕ (e1 ⊗ f2 ∧ · · · ∧ fk)⊕ (f1 ∧ · · · ∧ fk),

and cr+s−k+1(E ⊕ F ) is represented by the Poincaré dual of the vanishing locus of this section.

Set-theoretical Claim: Given a set S with chains of subsets

A0 ⊆ A1 ⊆ · · · ⊆ Ak = S and S = B0 ⊇ B1 ⊇ · · · ⊇ Bk,

we have
k⋂

i=0

(Ai ∪Bi) =

k⋃
j=1

(Aj ∩Bj−1).
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Applying this to the subsets Ai = (e1 ∧ · · · ∧ ei)−1(0), Bi = (fi+1 ∧ · · · ∧ fk)−1(0) of X, we get[
(e1 ∧ · · · ∧ ek)−1(0) ∩ (e1 ∧ · · · ∧ ek−1 ⊗ fk)−1(0) ∩ · · ·

∩ (e1 ⊗ f2 ∧ · · · ∧ fk)−1(0) ∩ (f1 ∧ · · · ∧ fk)−1(0)
]

=

ï k⋂
i=0

(
(e1 ∧ · · · ∧ ei)−1(0) ∪ (fi+1 ∧ · · · ∧ fk)−1(0)

)ò
=

ï k⋃
j=1

(
(e1 ∧ · · · ∧ ej)−1(0) ∩ (fj ∧ · · · ∧ fk)−1(0)

)ò
,

and hence

cr+s−k+1(E ⊕ F ) =
k∑

j=1

cr−j+1(E)cs−k+j(F )

= cr(E)cs−k+1(F ) + · · ·+ cr−k+1(E)cs(F ).

Axiomatic approach.

Fact. Knowing (or defining!) c1(OPn(1)) = [Pn−1], the Whitney sum formula and functoriality is then
enough to completely determine all Chern classes on all topological spaces.

Functoriality: c(f∗E) = f∗c(E).

Exercise. Define f∗E and prove this using zero loci of sections when f : X → Y is a map of manifolds.

Solution. Given local trivializations E|U ∼= U×Cr, we define a local trivialization f∗E|f−1(U)
∼= f−1(U)×Cr

by associating (x, v) ∈ f−1(U) × Cr with (f(x), v) ∈ U × Cr. The transition functions are given by the
transition functions for E composed with f , and hence remain continuous, so this defines a vector bundle.
Then if s1, . . . , sk are generic sections of E, we get that f∗s1, . . . , f

∗sk are generic sections of f∗E since all
sections of f∗E are pullbacks of sections of E. (Assuming X and Y are compact, so f is closed.) Moreover
the vanishing locus of f∗s1 ∧ · · · ∧ f∗sk = f∗(s1 ∧ · · · ∧ sk) is the preimage under f of the vanishing locus
of s1 ∧ · · · ∧ sk. Since the cohomology class of the preimage gives the pullback of the cohomology class (for
suitably general representatives missing critical values of f) this shows naturality of the Chern class.

There are two steps to proving this fact:

• All rank r bundles on X are pullbacks f∗Q of the universal bundle on the classifying space Q →
BGL(r,C) by a map f : X → BGL(r,C). (So we only need to define ci on one classifying space.)

• Splitting principle: We may assume E is a direct sum of line bundles without loss of generality.

Classifying space. Any bundle E is a quotient of an infinite rank trivial bundle Γ(E) (here V denotes
the trivial bundle with fibre V ):

Γ(E)
ev−→ E → 0. (∗)

(Or take a sufficiently large subbundle CN ⊆ C∞ = Γ(E), N ≫ 0.) Therefore it defines a map from X to
the Grassmannian

f : X → Gr(C∞, r),

x 7→ (∗)x.

There is a tautological universal quotient bundle Q→ Gr(C∞, r)

C∞ → Q→ 0 over Gr(C∞, r),

and from (∗) we get that f pulls this back to give E; f∗Q ∼= E. Thus Vectr(X) = [X,Gr(C∞, r)]. We call
Gr(C∞, r) the classifying space BGL(r,C). For example, if r = 1 we have BC× = CP∞, so any line bundle
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L → X is f∗O(1) for some (homotopy class of) map f : X → CP∞ (or f : X → CPN for N ≫ 0 if X is
finite dimensional). Then

c1(L) = f∗c1(O(1)) = f∗h

where h ∈ H2(CP∞) is the generator (the limit as N →∞ of the Poincaré duals of CPN−1 ⊆ CPN , or the
standard Kähler form).

Splitting principle. Given E → X (e.g. Q → Gr(C∞, r)) there is a space dominating X on which E
splits as a sum of line bundles:

π : Y → X such that π∗E = L1 ⊕ · · · ⊕ Lr,

with fibres Yx = π−1(x) given by the flag manifolds

Yx = {linearly independent complex line bundles L1, . . . , Lr ⊆ Ex}.

There are universal / tautological bundles Li on Y , and it is then tautological that π∗E ∼= ⊕r
i=1Li.

Fact: π∗ : H∗(X)→ H∗(Y ) is an injection, so pulling back c(E) loses no information, and

π∗c(E) = c(π∗E) = c(L1 ⊕ · · · ⊕ Lr) = c(L1) · · · c(Lr).

Hence for E → X we get a diagram

Y B(C×)r = (CP∞)r

X

f

π

such that π∗ : H∗(X)→ H∗(Y ) is an injection, and c(E) ∈ H∗(X) is the unique class such that

π∗c(E) = f∗[(1 + h1) · · · (1 + hr)].

So the splitting principle, the Whitney sum formula, and c1(O(1)) = h determine all Chern classes uniquely.
(Existence takes a little bit more work, e.g. computing H∗(Gr(C∞, r)).)

Exercise. Prove the following corollary: If E has rank r, then ci(E) = 0 for i > r.

Solution. From above we have
π∗c(E) = (1 + f∗h1) · · · (1 + f∗hr)

where h1, . . . , hr have degree 1, so the RHS has no terms in degree i > r. Hence π∗ci(E) = 0, and since π∗

is injective ci(E) = 0.

Grothendieck’s definition. On the projective bundle π : P(E)→ X we have the tautological inclusion

OP(E)(−1) ↪→ π∗E.

Since the quotient bundle is of rank r − 1,

cr(π
∗E/OP(E)(−1)) = 0.

By the Whitney sum formula, this is the degree r part of

π∗c(E)/c(OP(E)(−1)) = π∗c(E)/(1− h),

where h = c1(OP(E)(−1)). Thus

hr + π∗c1(E)hr−1 + · · ·+ π∗cr−1(E)h+ π∗cr(E) = 0. (∗)

Fact: H∗(P(E)) = H∗(X) ⊕ H∗(X)h ⊕ · · · ⊕ H∗(X)hr−1, so hr can be uniquely written as a linear
combination of 1, h, . . . , hr−1 and we can define ci(E) via (∗).
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Chern–Weil for line bundles. If X is a manifold we can pick a connection A on L → X. Its curvature
FA is a closed 2-form; dFA = 0. Changing a 7→ A+a gives FA 7→ FA+da, so [FA] ∈ H2(X;R) is independent
of A. In fact it is given by

[FA]

2πi
= [c1(L)] ∈ H2(X;Z)/torsion.

Let’s prove this forX a Riemann surface and L described by the clutching construction. WriteX = U∪S1D2

where D2 is a disc and S1 is an annulus thickening its boundary. Write L as CU ∪ϕ CD2 for a transition
function ϕ : S1 → C× of winding number n = c1(L). Put the trivial connection d on CU . In the trivialization
CD restricted to the annulus this is the connection

d+ ϕ−1dϕ

since this annhilates ϕ (which is glued to 1 on U). Extend this to any connection d+a over D2 and compute∫
X

FA =

∫
D2

FA =

∫
D2

da =

∫
S1

da =

∫
S1

dϕ

ϕ
=

∫
S1

d log ϕ = 2πin.

Chern–Weil theory. Suppose X is a manifold with a rank r bundle E → X and a connection A on E.
Form

p

Å
FA

2πi

ã
∈ H2k(X;R)

for any ad-invariant (p(N−1MN) = p(M)) polynomial function p of End(Cr). For example p could be
tr (giving c1(E)), or det (giving cr(E)), or any other symmetric polynomial in the eigenvalues. (In fact
H∗(BGL(r,C)) = Ad-invariant polynomials.) If p is integral, the result is an integral characteristic class.

Exercise. Show that p(FA) is closed, and changes by an exact form under A 7→ A+ a.

Theorem. We have c(E) = det(id + FA

2πi ) in H
∗(X)/torsion, i.e.

1 + c1(E) + c2(E) + · · · = 1 +
trFA

2πi
− tr(FA ∧ FA)

4π2
+ · · · .

Tangent bundle to projective space. Let V = Cn+1 so that P(V ) = Pn. Then

TPn = O(−1)∗ ⊗ V /O(−1).

Sketch. A point of P(V ) is a complex line L ≤ V . Pick any complement to write V = L ⊕ V/L. Then
nearby lines in V are graphs of linear maps L→ V/L. So the tangent space is L∗ ⊗ V/L.

Chern classes of projective space. Applying the Whitney sum formula to TPn = V (1)/O(−1) gives

c(TPn) = c(V (1))/c(O(−1)) = c(O(1)⊕(n+1)) = (1 + h)n+1,

where h = c1(O(1)) is the hyperplane class Poincaré dual to Pn−1 ⊆ Pn. (So for example cn(TPn) = (n+1)hn,
and integrating gives e(Pn) = n+ 1.)
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Hypersurfaces in projective space.

Exercise. “Adjunction”: If s ∈ Γ(E) is transverse to the zero section, show its zero locus Z = s−1(0) has
normal bundle NZ/X = E|Z .

Solution. Note that TE = π∗(TX ⊕ E), and so the derivative of s gives a map

TX → s∗TE = s∗π∗(TX ⊕ E) = TX ⊕ E

whose projection to TX is the identity. The condition of being transverse to the zero section means that
the projection to E is non-zero over Z. Furthermore, note that TX|Z = TZ ⊕NZ/X , and the derivative of
s vanishes on TZ since s|Z = 0. Therefore the composite

TZ ⊕NZ/X = TX|Z → TX|Z ⊕ E|Z → E|Z

vanishes on TZ, but is non-zero and hence induces an isomorphism NZ/X → E|Z of line bundles.

Exercise. Hence work out the total Chern class c(TXd
) of a degree d hypersurface Xd ⊆ Pn (the zero locus

of a section of O(d)). Apply to n = 3, d = 4 to find c1(TS) and e(S) for S a “K3 surface”.

Solution. Let i : Xd ↪→ Pn denote the inclusion. Note that i∗TPn = TXd
⊕NXd/Pn , so by the Whitney sum

formula
c(TXd

) = c(i∗TPn)/c(NXd/Pn).

But from naturality of the Chern class, and the above computation of c(TPn), we have

c(i∗TPn) = i∗(1 + h)n+1 = (1 + ω)n+1,

where ω = i∗h. Moreover the previous exercise gives NXd/Pn ∼= i∗O(d), so by naturality and the Whitney
sum formula

c(NXd/Pn) = c(i∗O(d)) = i∗(1 + c1(O(1)⊗d)) = (1 + d · ω).

Hence
c(TXd

) = (1 + ω)n+1/(1 + d · ω).

When n = 3 and d = 4 we have ω3 = 0, and

c(TS) = (1 + ω)4/(1 + 4ω)

= (1 + 4ω + 6ω2)(1− 4ω + 16ω2)

= 1 + 6ω2.

Hence c1(TS) = 0 and e(TS) = 6ω2.

Exercise. Compute ci(End(E)) in terms of ci(E) for E a rank 2 bundle. (Hint: Splitting principle.) Why
did you find c1 = 0 = c3 = c4?
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Solution. First assume E = L1 ⊕ L2 is a sum of line bundles. Then End(E) =
⊕

i,j L
∗
i ⊗ Lj , so by the

Whitney sum formula

c(End(E)) =
∏
i,j

c(L∗
i ⊗ Lj)

=
∏
i,j

(1 + c1(Lj)− c1(Li))

= 1 + 2c1(L1)c1(L2)− c1(L1)
2 − c1(L2)

2

= 1 + 4c2(E)− c1(E)2.

This then holds in general by the splitting principle and the naturality of the Chern class. We get that the
only non-vanishing Chern class of End(E) is c2(End(E)) = 4c2(E)− c1(E)2.

Exercise.

(1) Compute c4(Sym
3(E)) in terms of ci(E) for E a rank 2 bundle. (Hint: Splitting principle.)

(2) The Grassmannian Gr(2,C4) of 2-planes in C4 has a universal subbundle U ↪→ C4. Describe a cycle
Poincaré dual to c2(U∗). (Hint: Use (C4) ↠ U∗ to pick a section of U∗.)

(3) Describe a cycle Poincaré dual to c1(U∗). (Hint: Pick two sections of U∗ and see where they’re linearly
dependent.)

Solution. (1) By the splitting principle and naturality we may assume E = L1 ⊕ L2 is a sum of line
bundles. Then

Sym3(E) =

3⊕
k=0

(
L⊗k
1 ⊗ L⊗(3−k)

2

)
,

so by the Whitney sum formula

c(Sym3(E)) =

3∏
k=0

(
1 + kc1(L1) + (3− k)c1(L2)

)
.

Writing γi = c1(Li), we then have

c4(Sym
3(E)) = 9γ1γ2(γ1 + 2γ2)(2γ1 + γ2)

= 9γ1γ2
(
2(γ1 + γ2)

2 + γ1γ2
)

= 18c2(E)c1(E)2 + 9c2(E)2.

(2) The class c2(U∗) is Poincaré dual to the vanishing locus of a generic section of U∗. Using the inner
product on C4 we have a decomposition C4 = U ⊕ U∗, and then a generic section of U∗ is the image
⟨v,−⟩ of a generic section v of C4. The vanishing locus of this section is the set of planes perpendicular
to a continuously varying vector, which if we take a constant vector gives Gr(2,C3) ⊆ Gr(2,C4).

(3) Taking two sections ⟨v1,−⟩ and ⟨v2,−⟩ of U∗, they are linearly dependent at the planes whose or-
thogonal complements intersect the span ⟨v1, v2⟩. Swapping with orthogonal complements we then see
that c1(U∗) is Poincaré dual to the cycle given by those planes intersecting C2 ⊆ C4 in Gr(2,C4).

Exercise. Using (1,2,3) above, show that
∫
Gr(2,C4)

c4(Sym
3 U∗) = 27.

Solution. Note that the self-intersection of the cycle Poincaré dual to c2(U∗) from (2) is the intersection
Gr(2, V ) ∩ Gr(2,W ) = Gr(2, V ∩ W ) for generic 3-dimensional subspaces V,W ⊆ C4. Now generically
dim(V ∩W ) = 2, so this is a single point. Hence c2(U∗)2 is Poincaré dual to the cycle represented by a
point, i.e. it is the standard generator ω ∈ H4(Gr(2,C4)). Also, the self-intersection of the cycle Poincaré
dual to c1(U∗) from (3) is represented by the planes intersecting two generic copies of C2 in C4, which are
the sums of lines in C2 with lines in a chosen complement of C2. Intersecting this with the cycle Poincaré
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dual to c2(U∗) from (2) gives a point, since a generic copy of C3 intersects both copies of C2 in a line. Hence
c2(U∗)c1(U∗)2 is also ω, and we get∫

Gr(2,C4)

c4(Sym
3 U∗) =

∫
Gr(2,C4)

(18ω + 9ω) = 27

∫
Gr(2,C4)

ω = 27

since the integral of ω is the intersection number of Gr(2,C4) with a point, which is 1.

Exercise. Identify Gr(2,C4) with {lines P1 ⊆ P3}. Let s ∈ Γ(OP3(3)) cut out a cubic surface S ⊆ P3. Show
that s defines a section of Sym3 U∗ over Gr(2,C4) cutting out the lines in P3 which lie in S, of which there
are hence 27.

Solution. Pulling back s gives a section of OP1(3) for each line P1 ⊆ P3. Now OP(V )(d) ∼= Symd V ∗, both

having bases given by monomials, so from this we get a section of Sym3 U∗ since each P1 corresponds to
the projectivization of the associated fibre of U . This section vanishes when the homogeneous polynomial
defining s restricted to the line P1 is zero, i.e. when the line P1 lies in S. The Poincaré dual of this vanishing
locus is c4(Sym

3 U∗), so by the previous exercise the number of such lines is 27. (Assuming S is smooth, so
that s is transverse to the zero section.)

Segre classes. We defined ci(E) as (Poincaré dual to) the locus where r − i + 1 generic sections fail to
be linearly independent, i.e. the x ∈ X s.t.

Cr−i+1 s1(x),...,sr−i+1(x)−−−−−−−−−−−−→ Ex

fails to be injective. Similarly, we can define the ith Segre class si(E) ∈ H2i(X) to be ((−1)i times the
Poincaré dual of) the locus where r + i− 1 generic sections fail to generate E, i.e. the x ∈ X s.t.

Cr+i−1 s1(x),...,sr+i−1(x)−−−−−−−−−−−−→ Ex

fails to be surjective.

Exercise. Show that for line bundles si(L) = (−1)ic1(L)i.

Solution. When r = 1, a collection of r + i − 1 = i generic sections fails to generate the line bundle only
at the points where they all vanish. Each individual vanishing locus represents c1(L), so the intersection
represents c1(L)i.

In fact s(E) = c(E)−1, where s(E) = 1 + s1(E) + s2(E) + · · · ∈ H∗(X).

Čech cohomology formulation. Let O denote the sheaf of (holomorphic, algebraic, C∞, or ...) func-
tions, and O× the (multiplicative) sheaf of invertible functions. Then the exact sequence (in Euclidean
topology)

0→ Z 2πi−−→ O exp−−→ O× → 1

induces the long exact sequence of Čech cohomology groups

H1(X,O×)
δ−→ H2(X,Z)→ H2(X,O).

Consider an element e ∈ H1(X,O×) (i.e. invertible eUV on each overlap U ∩ V satisfying eUV eVW eUW = 1
on U ∩ V ∩W ) to be the transition functions for a line bundle L.

Exercise. Identify δ(e) ∈ H2(X,Z) with c1(L) for X a Riemann surface. (Hint: Use the clutching con-
struction. Lift all eUV ∈ O×

U∩V to log(eUV ) ∈ OU∩V compatibly except for the winding number of eUV ,
which gives Z-ambiguity.)

Solution. To compute δ(e) we lift the cochain (eUV ) to O, taking logarithms log(eUV ) on each U ∩ V , and
then consider the coboundary, i.e. the sums log(eUV )+log(eVW )+log(eUW ). We can choose the logarithms
to agree except when going around clutching circles where we must pick up a difference 2πin where n is
the winding number of the transition function over the circle. Hence pulling this coboundary back to Z we
get contributions from each winding number for each clutching circle, totalling up to give the Chern class
c1(L). (This is super sketchy, but I think the exercise is poorly set up; the covers used in the clutching
construction are not good covers, so their Čech cohomology does not match singular cohomology.)
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5 Hodge Theory - Peter Jossen

Hodge structures

Definition. Let n ∈ Z. A pure Hodge structure of weight n is a Q-vector space V of finite dimension
together with a decomposition of C-vector spaces

VC := V ⊗Q C =
⊕

p+q=n

V p,q

call the Hodge decomposition, satisfying V q,p = V p,q. Alternatively, it is given by a filtration

VC ⊇ · · · ⊇ F−1VC ⊇ F 0VC ⊇ F 1VC ⊇ · · · ⊇ {0}

called the Hodge filtration, satisfying

VC =
⊕

p+q=n

(F pVC ∩ F qVC).

These are related by the construction

F p0VC =
⊕
p≥p0
p+q=n

V p,q.

Definition. Let V be a Hodge structure. A polarization on V is an alternating Q-bilinear form

Q : V ⊗Q V → C

such that QC : VC ⊗C VC → C satisfies

• QC(v, w) = 0 if v ∈ V p,q and w ∈ V p′,q′ with (p, q) ̸= (p′, q′), and

• ip−q ·QC(v, v) > 0 for v ∈ V p,q \ {0}.

We then say that V is polarizable.

Proposition. Polarizable pure Hodge structures form a semi-simple abelian Q-linear category. (Semi-simple
means all subobjects are summands.) The category of semi-pure Hodge structures (direct sums of pure Hodge
structures of different weights) has a natural “tensor product”, making it a Tannakian category. (With a
notion of dual, e.t.c.)

Definition. Let V be a pure Hodge structure of weight n. We define the space

V Hdg := V ∩ V 0,0 ⊆ VC

of Hodge cycles. Note that this is zero if n ̸= 0.

Remark. If V1, V2 are Hodge structures of weights n1, n2 then the space Hom(V1, V2) has a natural Hodge
structure of weight n1 + n2 as the tensor product V ∗

1 ⊗ V2, which satisfies

Hom(V1, V2)
Hdg = HomHdg(V1, V2);

the Hodge cycles in Hom(V1, V2) are the morphisms of Hodge structures V1 → V2. Both sides are zero if
n1 − n2 ̸= 0, i.e. n1 ̸= n2.

Example. Let Λ ⊆ Cg be a lattice, and consider V = ΛQ. We have a map

VC = ΛC
α−→ Cg

λ⊗ z 7→ λz,

giving a Hodge filtration VC ⊇ kerα ⊇ {0}. Note that kerα is g-dimensional, as ΛC ∼= C2g. So we get a
Hodge structure on V :

VC = kerα⊕ kerα.

Exercise. Show that this Hodge structure is polarizable iff Λ ⊆ Cg satisfies the Riemann bilinear relations,
i.e. Cg/Λ is a complex abelian variety. (See the reference on complex abelian varieties.)

This shows that there is a polarizable Hodge structure on the homology group H1(Cg/Λ) = Λ.
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de Rham cohomology

Let X/C be a smooth projective algebraic variety. We have the cohomology

H∗(X;Q) := H∗
sing(X(C);Q)

which is dual to
H∗(X;Q) := Hsing

∗ (X(C);Q).

To compare with de Rham cohomology, let ω be a C∞ differential n-form on X, satisfying dω = 0. We get
a C-linear map

Hn(X;Q)C → C; [σ] 7→
∫
σ

ω :=

∫
∆n

σ∗ω.

Theorem (de Rham). This induces a C-linear isomorphism

H∗
dR(X;C)→ H∗

sing(X;Q)C.

Taking local complex coordinates z1, . . . , zd, we get a real system of coordinates z1, . . . , zd, z1, . . . , zd. With
these we can express a real analytic differential n-form ω as a sum of forms

fdzi1 ∧ · · · ∧ dzip ∧ dzj1 ∧ · · · ∧ dzjq

where f is real analytic and p + q = n, known as a form of type (p, q). We can then hope to get a Hodge
decomposition via

Hp,q
dR (X;C) = {forms of type (p, q)} ⊆ Hn

dR(X;C).

Theorem (Hodge). If X is a smooth projective algebraic variety, then

Hn
dR(X;C) =

⊕
p+q=n

Hp,q
dR (X;C).

(This part only requires X have a Kähler structure.) Moreover, the induced Hodge structure on Hn(X;Q)
is polarizable, depends functorially on X, and is compatible with cup products and Poincaré duality. So for
example the cup product

Hn(X;Q)⊗Hn′
(X;Q)→ Hn+n′

(X;Q)

is a morphism of Hodge structures. (This part requires the projective algebraic structure on X.)

This was the original source for the concept of Hodge decomposition.

Sheaf cohomology

Here is an alternative approach to constructing a Hodge decomposition of cohomology. We start with the
perspective of sheaf cohomology

Hn(X,C).

The various de Rham complexes give resolutions of the sheaf C.

• C∞ differential forms give flabby sheaves because of the existence of bump functions.

• Holomorphic differntial forms give non-flabby sheaves.

Using holomorphic (complex analytic) differential forms we have a resolution Ω•,an
X → C (but this is not an

acyclic resolution). Then we get a spectral sequence, the Hodge-to-de Rham spectral sequence

Ep,q
2 = Hp(X,Ωq,an

X )⇒ Hn(X,C) = Hn(X;Q)C

which in fact degenerates on the 2nd page, so that

Hn(X;Q)C =
⊕

p+q=n

Hp(X,Ωq,an
X ).

Hence this also gives a Hodge structure on Hn(X;Q). The (0, n) part is the space of holomorphic n-forms,
and the other parts give alternative descriptions of the forms of type (p, q).
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The cycle class map

Let X/C be a smooth projective connected variety of dimension d, and let Y ⊆ X be a smooth projective
connected subvariety of dimension d− c. We have the map

H2d−2c(X;Q)→ H2d−2c(Y ;Q) = Q(−d+ c)

where Q(−d+ c) is the 1-dimensional Hodge structure of weight −2(−d+ c) = 2d− 2c. Moreover Poincaré
duality gives a perfect pairing

H2d−2c(X;Q)⊗H2c(X;Q)→ Q(−d).

Hence the linear functional H2d−2c(X;Q)→ Q(−d+ c) induced from Y gives an element

cl(y) ∈ H2c(X;Q)(c) := H2c(X;Q)⊗Q(c),

which is in fact a Hodge cycle. (Note that H2c(X;Q)(c) has weight 2c− 2c = 0.)

This can be extended to a map

cl : CHc(X)Q →
(
H2c(X;Q)(c)

)Hdg

where CHc(X) is the Chow group, known as the cycle class map. (Here CHc(X)Q consists of “formal
Q-linear combinations of smooth codimension c subvarieties in X”.)

Conjecture (The Hodge Conjecture). This map is surjective.

Remark. Certainly it is not injective, since the Chow group is large and infinite-dimensional, while the
Hodge cycles in H2c(X;Q)(c) are a small finite-dimensional space.

Exercise. One case that is known is the case c = 1. This is done by relating the problem to the first Chern
class, using the Lefschetz (1, 1) theorem. Explore this for yourself. (See Voisin’s book for details.)

Theorem (Mattuck). The Hodge conjecture holds for general abelian varieties.

This is proved by showing the lack of existence of Hodge cycles in general, rather than by constructing
subvarieties to represent them, so it is somewhat unsatisfying.

Remark. A number field can act on an abelian variety X if it is contained in the ring End(X)⊗Q.

Theorem (van Geemen). The Hodge conjecture holds for abelian varieties with Q(i)- or Q(ζ3)-actions.

One area where the status of the Hodge conjecture is unknown is in the case of abelian 4-folds, due to
Weil’s construction of what are called Weil cycles. These are concrete examples of Hodge cycles where it is
unknown whether they can be expressed in terms of subvarieties or not.

Non-Example. Complex tori do not satisfy the Hodge conjecture, by work of C. Voisin. However they are
not projective varieties.

Mixed Hodge structures

Definition. A mixed Hodge structure is a Q-vector space V with two filtrations

{0} ⊆ · · · ⊆W−1V ⊆W0V ⊆W1V ⊆ · · · ⊆ V,

the weight filtration, and
VC ⊇ · · · ⊇ F−1VC ⊇ F 0VC ⊇ F 1VC ⊇ · · · ⊇ {0},

the Hodge filtration, such that on each space grWn V := WnV/Wn−1V the Hodge filtration induces a pure
Hodge structure of weight n. We say it is graded polarizable if each pure Hodge structure grWn V is polarizable.

Theorem (Deligne). If X is any complex algebraic variety, then Hn(X;Q) carries a mixed Hodge structure
which is functorial, and compatible with various long exact sequences (Mayer–Vietoris, Gysine, sequence
of a triple, excision, ...). When X is smooth and projective the weight filtration is trivial, and the Hodge
filtration gives the standard pure Hodge structure.
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Example. Suppose E/C is an elliptic curve, and P,Q ∈ E(C) are distinct. The map E \ {P} → E induces
isomorphisms on H0 and H1. Now consider the Mayer–Vietoris sequence:

0 H0(E) H0(E \ {P})⊕H0(E \ {Q}) H0(E \ {P,Q})

H1(E) H1(E \ {P})⊕H1(E \ {Q}) H1(E \ {P,Q})

H2(E) 0.

∂

The later H2 groups vanish as the varieties are not closed in projective space. In degree 0 we have the split

short exact sequence Q(0)
∆−→ Q(0)⊕Q(0)→ Q(0), so ∂ = 0. Letting V = H1(E) we then have V

∆−→ V ⊕V
in degree 1, with cokernel V , giving a short exact sequence

0→ V → H1(E \ {P,Q})→ H2(E)→ 0.

Now V = H1(E) is a pure Hodge structure of weight 1, and H2(E) = Q(−1) is a pure Hodge structure of
weight 2, so we see that H1(E \ {P,Q}) is a mixed Hodge structure with weights 1 and 2. This short exact
sequence computes grW2 H1(E \ {P,Q}) = H2(E) = Q(−1).

Exercise. Note that due to the symmetry of the Hodge structure, a smooth projective complex variety X
must have H1(X;Q) of even dimension.

• Find an example of a smooth curve X with π1(X(C)) = Z.

• Find an example of a projective curve Y with π1(Y (C)) = Z.

• Observe that H1(X;Q) ̸∼= H1(Y ;Q) as Hodge structures (i.e. they have different weights).

Solution. • Take X = A1 \ {0}, which has π1(X(C)) = π1(C×) = Z.

• Take the curve Y : x(y − x2) = 0 in P2. This is the union of two copies of P1; the component x = 0
and the component y = x2, which intersect at the origin and at the point at infinity. Hence Y (C) is
homotopy equivalent to S1 ∨ S2 ∨ S2, and π1(Y (C)) = Z.

• Consider the Mayer–Vietoris sequence for P1 = A1
x ∪ A1

y, where A1
x ∩ A1

y = X. We have

H1(A1)⊕H1(A1)→ H1(X)→ H2(P1)→ H2(A1)⊕H2(A1),

and H1(A1) = 0 = H2(A1), so H1(X) = H2(P1) = Q(−1). For Y consider the open subsets U =
Y \ {0} and V = Y \ {∞}. Then U and V are contractible, and U ∩V is a disjoint union of two copies
of X. Taking the Mayer–Vietoris sequence we get

0 H0(Y ) H0(U)⊕H0(V ) H0(U ∩ V )

H1(Y ) H1(U)⊕H1(V ) = 0,

∂

which in degree 0 is given by

0→ Q(0)
∆−→ Q(0)⊕Q(0)→ Q(0)⊕Q(0).

The cokernel must have weight 0, so H1(Y ) = Q(0). Hence H1(X) ̸∼= H1(Y ) as Hodge structures.

References

• C. Voisin “Hodge Theory and Complex Algebraic Geometry”

• Ch. Berkenhake, H. Lange “Complex Abelian Varieties”
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6 Blowing Up - Dario Beraldo

We will be looking at blowing up in algebraic geometry, considering varieties over C and the Zariski topology.

Setup

Take Z ↪→ Y a closed embedding of algebraic varieties over C. The “blowup of Y along Z” is a variety
BlZ Y with a map to Y . (For now we will assume Y and Z are non-singular.)

It is obtained by replacing Z with the projectivization of the normal bundle P(NZ/Y ). (The normal bundle
NZ/Y associated to Z ↪→ Y is the quotient of tangent bundles TY |Z/TZ .)

P(NZ/Y ) = {(z, l) : z ∈ SZ, and l is a line through z normal to Z in Y }.

The blow up is an isomorphism over Y \Z, and a curve crossing Z at a point lifts to a curve going through
a point of the fibre P(NZ/Y ) which corresponds to the tangent line of the curve as it crosses Z. The bit
P(NZ/Y ) lying over Z is known as the “exceptional divisor”.

P(NZ/Y ) BlZ Y BlZ Y \ P(NZ/Y )

Z Y Y \ Z.

(z,l)7→z ∼=

Example. The blow up of 0 ∈ V for a vector space V ∼= An: we take Z = {0}, Y = V . Then N0/V =
T0V/0 ∼= V , and we have

P(V ) Bl0 V Bl0 V \ P(V )

0 V V \ {0}.

∼=

Hence Bl0 V = (V × P(V ))inc := {(v, l) ∈ V × P(V ) : v lies on the line l}.

We have two projections: the structure map of the blow up Bl0 V → V , and the map Bl0 V → P(V ) which
is the tautological line bundle OP(V )(−1).

For singular subvarieties, we make the following temporary definition for the case of a point Z = 0 ↪→ Y ⊆ An

in an affine variety.

Definition. Taking the maps

Bl0 AN AN

π−1(Y \ {0}) Y \ {0},

π

we define
Bl0(Y ) := π−1(Y \ {0});

the closure in the Zariski topology of the preimage of π−1(Y \ {0}).
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Exercise. Consider the cone Y = V (x2 + y2 − z2) ⊆ A3, and the point 0 ↪→ Y . This is a singular point of
Y , so we blow it up. Show that if W = V (X2 + Y 2 + Z2) ⊆ P2 then Bl0 Y = OW (−1) is the tautological
line bundle on W .

Solution. We have

π−1(Y \ {0}) =
{(

(x, y, z), [X : Y : Z]
)
: xY = yX, xZ = zX, yZ = zY, x2 + y2 = z2, (x, y, z) ̸= (0, 0, 0)

}
,

and since (x, y, z) ̸= (0, 0, 0) these equations imply [X : Y : Z] = [x : y : z] and hence X2 + Y 2 = Z2. On
the other hand

OW (−1) =
{(

[X : Y : Z], (x, y, z)
)
: X2 + Y 2 + Z2 = 0, xY = yX, xZ = zX, yZ = zY

}
,

so we see that π−1(Y \{0}) = OW (−1)\{zero section}. Hence Bl0 Y = OW (−1) \ {zero section} = OW (−1),
since the complement of the zero section is dense.

Representation theoretic example

Consider the “nilpotent cone”

NSL2
=

ßÅ
a b
c −a

ã
: a2 + bc = 0

™
⊆ A3.

The blowup Bl0(NSL2
)

π−→ NSL2
is given by the cotangent bundle

T ∗(P1) = {(l, φ) : l ∈ P1, φ ∈ Hom(C2/l, l)};

we get from (l, φ) to an element of NSL2 by the following square:

V V

V/l l.

∈NSL2

φ

This is the first instance of the “Springer resolution”. For a group G = GLn,SOn,Sp2n, . . . we get for the
Lie algebra g a “nilpotent cone” Ng and a map

Ng ← T ∗(G/B)

where B is a Borel subgroup, and then G/B is some flag variety like P1.
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What are blow-ups good for?

1. Resolution of singularities (Hironaka) Principle: any singular variety becomes non-singular after
finitely many blow-ups:

non-singular: BlZn Yn → · · · → BlZ1 Y1 → Y1 = BlZ0 Y0 → Y0 = Y.

Exercise (Must do). Take V (f) ⊆ A2, where f(x, y) = x3 − y2 with a singularity at (0, 0). Blow up the
singular point (0, 0) until you get a smooth curve. Now do the same for f(x, y) = x24 − y17.

Solution. Taking coordinates (x, y, [X : Y ]) ∈ A2 × P1 we have

Bl(0,0) V (f) ∩ {X ̸= 0} = {(x, y, [1 : t]) : y2 = x3, y = xt, (x, y) ̸= (0, 0)}

= {(x, y, [1 : t]) : x = t2, y = xt, t ̸= 0}
=

{
(x, y, [1 : t]) : x = t2, y = xt

} ∼= A1
t ,

while

Bl(0,0) V (f) ∩ {Y ̸= 0} = {(x, y, [s : 1]) : y2 = x3, x = ys, (x, y) ̸= (0, 0)}

= {(x, y, [s : 1]) : ys3 = 1, x = ys}
=

{
(x, y, [s : 1]) : ys3 = 1, x = ys

}
has no points with s = 0, so this is the whole blow up; Bl(0,0) V (f) ∼= A1

t via t 7→ (t2, t3). Now A1 is smooth,
so we are done.

2. Birational geometry Two varieties Y1, Y2 are birational, which we write Y1 ∼ Y2, if there are non-
empty open sets U1 ⊆ Y1, U2 ⊆ Y2 which are isomorphic, i.e. U1

∼= U2. We say Y is rational if Y ∼ AN ∼ PN

for some N .

Example. • Take the quadric

Q = {[x0 : · · · : x4] : x0x4 + x1x3 + x22 = 0} ⊆ P4,

which has dimension 3. This is rational:

Q ⊇ Q ∩ {x0 ̸= 0} = {[1 : x1 : x2 : x3 : −x22 − x1x3]} ∼= A3.

• A smooth curve Σg of genus g is rational iff g = 0.

• BlZ Y ∼ Y via the open set Y \ Z.

Theorem (Weak Factorization, Abramovich–Karu–Matsuki–Wlodariczyk). Two smooth projecdtive vari-
eties X,Y are birational iff there exists a chain of roofs

W01 W12 · · ·

X = X0 X1 X2 Xn = Y

with each map a blow-up along a smooth subvariety.

Exercise. Find such a chain (one roof) from the quadric Q above to P3. (Hint: blow up a point in Q.) Now
replace the dimension 3 with an arbitrary dimension n. The special case n = 2 gives a roof from P1 × P1 to
P2.

Corollary. Birational invariants are the same thing as blow-up invariants.

Example. For example, the Hodge numbers hp,0(X) are blow-up invariants and hence birational invariants.
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Algebraic definition

We will know look at two perspectives on a proper definition of the blow-up:

• Algebra: “What else can it be?”

• Equations in affine charts: “How can I compute in practice?”

For the first, suppose the embedding Z ↪→ Y is locally given by SpecA/I → SpecA. We want a map
BlZ Y → Y , which should be projective, so given by

Proj(R) = BlZ Y → Y = SpecA

for some graded A-algebra R constructed “naturally” from I. We have a summand of A in R, and we add
a summand of I, which forces by products a summand of I2, and so on, giving the Rees algebra:

R = A⊕ I ⊕ I2 ⊕ I3 ⊕ · · · = Sym•(I);

the product is defined via Ip · Iq ↪→ Ip+q. We may then define

BlZ Y = Proj(R) = Proj(
⊕
m≥0

Im) = Proj(Sym•(I)),

and check that BlZ Y |Z = P(NZ/Y ).

To get equations in affine charts, choose finitely many generators I = (f1, . . . , fk). These give a surjection

A⊕k ↠ I,

and applying the functors Sym• and Proj we get a closed embedding

Proj(Sym•(I)) ↪→ Proj(Sym•(A⊕k)) = Pk−1
A = Y × Pk−1.

This restricts to an embedding

BlZ Y ↪→ (Y × Pk−1)inc =

ß(
y, [T1 : · · · : Tk]

)
∈ Y × Pk−1 : rank

Å
T1 · · · Tk
f1(y) · · · fk(y)

ã
< 2

™
.

What is this in affine charts? We have

BlZ Y ∩ {T1 ̸= 0} = Spec

Å
A[t2, . . . , tk]/(f2 − f1t2, . . . , fk − f1tk)/(f1-torsion)

ã
,

where fi = f1ti is the incidence relation, and f1-torsion refers to the values annhilated by powers of f1,
which give the extra equations cutting out BlZ Y . (Note that the ideal I = (f1, . . . , fk) is made to be
principal, generated by f1, in this chart.)

Example. If Y = {(x, y) : y2 = x} and I = (x, y), we get Bl0 Y ⊆ (Y × P1)inc with coordinates
(
(x, y), [U :

V ]
)
satisfying y2 = x3, and the incidence relation xV = yU . In the chart U ̸= 0 we have variables

x, y, t = V/U with relations y − tx, t2x2 − x3 = x2(t2 − x), and the x2 factor is dropped when we mod out
by x-torsion, giving

Bl0 Y ∩ {U ̸= 0} = {(x, y, t) : y = tx, x = t2} ∼= A1
t .

In fact this is the whole blow-up; the point where U = 0 is not in Bl0 Y . (This can be checked in the other
chart, or by observing that the curve has no vertical tangent.) This blow-up hence gives us the normalization
map A1

t → Y , t 7→ (t2, t3).

Example. Blowing up P2 at 9 (generic) points: Consider generic homogeneous cubics F,G in x, y, z, with
vanishing locus V (F,G) = {9 points}. We claim the following description of the blow-up:(

[x : y : z], [a : b]
)
∋ P2 × P1 V (aF + bG) = BlV (F,G) P9

P2.

Over points with F = G = 0 the fibre is the whole copy of P1, and away from them (F,G) ̸= (0, 0) implies
[a : b] is uniquely determined by aF + bG = 0.
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7 Topology of Manifolds - Simon Donaldson

We will look at:

• Some examples.

• Some main ideas.

• The reason for the distinction between high and low dimensions that appears when classifying manifold
topology.

Examples and Ideas

The Classification of Surfaces

Given n-dimensional manifolds M1,M2, we have the connected sum M1#M2.

Using this we have the classification of closed surfaces:

• Orientable case (no Möbius bands): S2, T 2, T 2#T 2, . . .

• Non-orientable case: RP2,RP2#RP2,RP2#RP2#RP2, . . .

For n ≥ 4, we can construct a manifold whose fundamental group is given by any desired finite presentation.
Hence we cannot hope for such a classification of manifolds in these dimensions, since there isn’t even an
algorithm to decide if a finite presentation describes the trivial group.

Algebraic Topological Data

Suppose Mn is oriented, smooth and closed. We have many algebraic topological invariants even when
restricting to simply connected manifolds:

• H∗(M ;Z) PD←→ H∗(M ;Z) with the cup product / intersection product.

• We have characteristic classes: the Steifel–Whitney classes wi, the Pontryagin classes pi(M) =
pi(TM) ∈ H4i(M ;Z). (Defined by pi(V ) = (−1)ic2i(V ⊗ C) where c2i is the Chern class.)

• ...

If n = 2m, we get an intersection form Hm(M)×Hm(M) → Z which is symmetric if m is even and skew-
symmetric if m is odd. When m is even this symmetric form has a signature σ(M). For closed manifolds it
is non-degenerate.
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The classification of such forms over Z in the skew-symmetric case is simple: they are sums of blocks of the
form Å

0 1
−1 0

ã
.

In the symmetric case the classification over R is given by the signature, but over Z there is a rich theory.

Projective Planes

Beyond the spheres, the simplest homology one can ask for occurs in dimension 4k withH0(M) = H2k(M) =
H4k(M) = Z and Hi(M) = 0 otherwise. For k = 1 we have the example CP2, given by attaching D4 to S2

using the Hopf map ∂D4 = S3 → S2. Similarly, for k = 2 we have the projective plane over the quaternions
HP2, constructed fom a map S7 → S4. For k = 4 we have the Cayley projective plane over the Octonions /
Cayley numbers, constructed from a map S15 → S8. There are no more examples, by some deep algebraic
topology (non-existence of maps with Hopf invariant 1).

Plumbing

Suppose Γ is a graph, with numbers ci ∈ Z for each vertex vi. We construct from this a 4-manifold XΓ,⃗c

with boundary:

• For a vertex vi, take a copy Σi of S
2, and a line bundle Li → Σi with c1(Li) = ci. (For example if

ci = −2 then Li = T ∗Σi.) Then let Ni be a tubular neighbourhood of the zero section in Li, which is
a 4-manifold with boundary.

• For an edge between vi and vj , we glue Ni and Nj as follows, with Σi, Σj transverse:

Then the intersection form has ci’s for the diagonal entries (self-intersections) and the adjacency matrix of
Γ off the diagonal.

ADE Manifolds

Take ci = −2, and let Γ be the Dynkin diagram of one of the ADE Lie algebras.

• Ak: , . . .

• Dk: , . . .

• The exceptional Lie algebras E6, E7, E8, e.g. E8:

These correspond to finite subgroups of SU(2):

• Ak: cyclic of order k + 1

• Dk: dihedral of order 2k

• E6: tetrahedron, E7: octahedron, E8: icosahedron.
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Note that we have the double cover SU(2) = S3 → SO(3), so these correspond roughly to finite subgroups
in SO(3). Moreover we obtain the boundary ∂XΓ as the quotient S3/G for the corresponding group G. This
gives the 3-manifolds whose universal cover is S3.

Example. The simplest case is A1, where there is just one vertex. Then XΓ is a tubular neighbourhood of
S2 in T ∗S2, and ∂XΓ is S3/{±1} = RP3 = SO(3).

Example. In the case E8, the group G is perfect and ∂XΓ is a homology sphere, which was discovered
by Poincaré. If we add a cone on ∂XΓ to XΓ we get a simply connected 4-dimensional space Z which
is not a manifold but is a “homology manifold”. The intersection form of Z is the E8 quadratic form.
Now Rohlin’s Theorem, from the 1950’s, asserts that a simply-connected smooth closed 4-manifold with
“even” intersection form has signature divisible by 16. The E8 is even with signature -8, so there is no
simply-connected smooth closed 4-manifold with this intersection form.

The Pontryagin Classes and Examples in Dimensions 7 and 8

Let V → S4 be a rank 4 oriented vector bundle, with structure group SO(4) after picking a metric. The
unit ball bundle gives a manifold X8 with boundary ∂X = Y 7 the unit sphere bundle in V .

Now such bundles V are classified by elements of π3(SO(4)) by the clutching construction, and π3(SO(4)) =
π3(S

3 × S3) = Z⊕ Z, so V is given by a pair of integers (n+, n−) ∈ Z⊕ Z. (Here we use the double cover
S3 × S3 = SU(2) × SU(2) → SO(4).) The self-intersection number d of S4 in X is d = n+ − n−, and the
Pontryagin class p1(X) evaluated on S4 is q = 2(n+ + n−), so we also recover V from the numbers d and q.
From the Serre spectral sequence, one computes that H4(Y ) = Z/dZ.

• d = 0: H3(Y ) = H4(Y ) = Z, so Y looks like S3 × S4 in homology, but the non-trivial bundles are
distinguished by the different values of q = 2(n+ + n−).

• d = 1: H3(Y ) = H4(Y ) = 0, so Y is a homotopy sphere. Then Y is homeomorphic to S7 by
the generalized Poincaré conjecture, but by changing q = 2(n+ + n−) it turns out one obtains non-
diffeomorphic manifolds, called exotic spheres. (This is due to Milnor.) Adding a cone on Y to X
then gives a topological 8-manifold with no smooth structure.

Cobordism, Surgery and the Whitney Trick

Cobordism

Definition. Oriented cobordism is an equivalence relation on closed oriented n-manifolds. Manifolds
Mn

0 ,M
n
1 are cobordant, written M0 ∼M1, if there is an oriented (n+ 1)-manifold W with

∂W =M0 ⊔M1,

where M0 denotes M0 with reversed orientation. The cobordism equivalence classes form an abelian group
with the operation of disjoint union, written Ωn.

In dimension 4k (other dimensions only have finite cobordism groups), we have the following cobordism
invariants:

• The signature σ.

• The Pontryagin numbers, which are defined by evaluating certain polynomials in the Pontryagin
classes on the fundamental class [M ] ∈ H4k(M). When k = 1 we just have the Pontryagin number
p1 = ⟨p1, [M ]⟩. For k = 2 we have

p21 = ⟨p1(M)2, [M ]⟩ and p2 = ⟨p2(M), [M ]⟩,

for k = 3 we have p31, p1p2, p3, and so on.

Theorem (The Hirzebruch Signature Theorem). The signature σ(M) can be expressed as a rational poly-
nomial in the Pontryagin numbers.
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Remark. The fact that the coefficients are rational while the signature is an integer has important conse-
quences, in a similar vein to Rohlin’s Theorem.

Example. In dimensions 4 and 8 we have σ(M4) = p1/3 and σ(M8) = (7/45)p2− (1/45)p21. In general the
Bernoulli numbers are involved in the coefficients.

Surgery

In fact any cobordism is a composite of particular elementary cobordisms called “surgeries”.

Definition. If Σ ⊆ Mn is an embedded p-sphere with given trivialization of its normal bundle, we define
the surgery along Σ as follows. The trivialization gives a tubular neighbourhood N ∼= Sp ×Bn−p, with

∂N ∼= Sp × Sn−p−1 ∼= ∂(Bp+1 × Sn−p−1).

We then remove N , and glue N ′ = Bp+1 × Sn−p−1 in its place along ∂N ∼= ∂N ′, obtaining a new manifold
M ′ which is the result of surgery.

Example. When p = 0 we get the self-connected sum. The connected sum is hence surgery on the disjoint
union.

Remark. There is a standard cobordism from M to M ′ given by attaching a “handle” to M × [0, 1]. The
handle H = Bp+1 ×Bn−p is an (n+ 1)-dimensional (p+ 1)-handle, with

∂H = (Sp ×Bn−p) ∪ (Bp+1 × Sn−p−1) = N ∪N ′,

with the intersection of N and N ′ in ∂H given by ∂N ∼= ∂N ′. Hence we can glue H to M × {1} along
N , which results in applying the above surgery to M × {1} in the boundary of M × [0, 1]. This is called
an elementary cobordism. (Note that technically we need to smooth the corners in this gluing in order to
preserve the smooth structure. This can be done in a standard way.)

Morse Theory

A fundamental motivation for the notion of cobordism comes from considering families of equations. For
example, suppose that F : X → T is a smooth map, and for t ∈ T let Zt ⊆ X be the set of solutions to the
equation F (x) = t. For generic t the solution set Zt is a manifold of dimension n = dim(X)− dim(T ). For
different generic values t0, t1 the manifolds Zt0 , Zt1 may not be diffeomorphic, but are cobordant. To see
this, join t0, t1 by a path γ : [0, 1]→ T and let W ⊆ X × [0, 1] be the set

W = {(x, s) : F (x) = γ(s)}.

For a generic path γ this will be a manifold of dimension n+1 giving a cobordism from Zt0 to Zt1 . A similar
discussion applies to other families of equations, such as zero sets of sections of vector bundles. The ideas
can also be extended to certain infinite dimensional situations, for example moduli spaces of holomorphic
curves.
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Example. Consider hypersurfaces X ⊆ RP5 defined by homogeneous polynomials of degree 4. The poly-
nomial x40 − (x41 + x42 + x43 + x44) gives a 4-sphere. For different polynomials we get many other 4-manifolds,
but we can never get CP2 since it is not cobordant to 0.

To generate cobordisms by elementary cobordisms, we look at the special values of t ∈ T where Zt changes
diffeomorphism type; where it fails to be a manifold.

Example. Take Rn+1 with coordinates x1, . . . , xq, y1, . . . , yp+1 where p+ q = n. Let f : Rn+1 → R be the
quadratic form |x|2 − |y|2. Then f−1(−1) contains a sphere Σ = Sp, and f−1(1) contains a sphere Sq−1.
The manifold f−1(1) is obtained from f−1(−1) by surgery along Σ, and f−1[−1, 1] is diffeomorphic to the
standard elementary cobordism realizing this surgery.

In general, for a cobordismW fromM0 toM1 we consider a particularly nice type of function f :W → [0, 1]
known as a Morse function, with f−1(1) = M1, f

−1(0) = M0. There are finitely many critical values of
f in [0, 1], and the manifolds Mt = f−1(t) change by a surgery as t crosses each critical value, giving a
factorization of W into elementary cobordisms. The number p+1 in the surgery is the index of the critical
point, which can be read off from the Hessian of f . (In fact in a neighbourhood of a critical point, the Morse
function can be written in the form |x|2 − |y|2 as in the previous example using suitable coordinates.)

Example. Let K ⊆ S3 be an embedded circle, i.e. a knot. The boundary of a tubular neighbourhood N of
K is a torus T . There is a well-defined meridian µ ∈ H1(T ) which bounds a disc in N . To specify surgery
we need a class γ ∈ H1(T ) with γ ·µ = 1, which will then bound a disc in the solid torus N ′ which we attach.
There is a unique longitudinal class λ ∈ H1(T ) with λ · µ = 1 such that λ maps to 0 in H1(S

3 \N), so we
can take γ = λ + cµ for any integer surgery coefficient c. Now let L ⊆ S3 be a link with components Ki.
Perform surgery on each component with coefficients ci to get a 3-manifold Y which is the boundary of a
4-manifold X. Then H2(X) has a basis {σi} in which the intersection form has diagonal entries the ci’s and
off-diagonal entries the linking numbers lk(Ki,Kj). The cobordism group Ω3 vanishes, which implies that
all closed 3-manifolds are obtained by this construction. We get another description of the ADE manifolds
XΓ by taking a link with unknotted components whose linking matrix corresponds to the graph Γ with
coefficients −2.

The Whitney Trick

Suppose Mn is simply-connected, and P p, Qq are transverse path-connected submanifolds of M , with
p + q = n. They then have finitely many signed intersection points. Suppose a, b ∈ P ∩ Q have opposite
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sign. Can we “cancel” them? The Whitney trick says: yes, if p, q ≥ 3. (In fact this can be made sharper,
by following carefully the actual requirements of the proof.) Specifically, we can find P ′ isotopic to P with
P ′ ∩Q = (P ∩Q) \ {a, b}. For example, if the algebraic intersection P ·Q = 0 then we can isotope P to be
disjoint from Q.

Sketch of proof. By path-connectedness, we have paths from a to b in P and Q, giving a loop γ in P ∪Q.
As M is simply-connected we have a null-homotopy D2 ↪→M , ∂D2 = γ, and for dimension reasons we can
perturb this to an embedding disjoint from P,Q away from γ. Since the signs of a and b are opposite, we
can trivialize the normal bundle of γ suitably to get a neighbourhood of D inM diffeomorphic to a standard
model of the situation in Euclidean space:

In this model we then write down an explicit isotopy removing the intersections as follows, which can be
transported along the diffeomorphism back to M .

Remark. This result is the basic fact that distinguishes high- and low-dimensional manifold topology. In
dimension 4 with p = q = 2 the argument fails since the disc is no longer generically disjoint from P and Q,
and no longer generically embedded (it may have self-intersection points). The details that need checking
about frames along γ for the trivialization also fail. In fact the conclusion is false.

Remark. In dimension 3 there are famous results such as Dehn’s Lemma and The Loop Theorem in a
similar spirit, which are proved in an entirely different way.

The h-Cobordism Theorem

Using the Whitney trick, we obtain the following fundamental result:

Theorem (The h-Cobordism Theorem). Suppose Mn
0 ,M

n
1 are simply-connected manifolds of dimension

n ≥ 5 cobordant via a simply-connected cobordism Wn+1. Suppose that the inclusions Mi ↪→ W induce
isomorphisms on homology. Then M0,M1 are diffeomorphic and W ∼=M0 × [0, 1].

Sketch of proof. Choose a Morse function f0 on W to represent it as a composition of surgeries. If f0 has no
critical points then we clearly have W ∼=M0 × [0, 1], so our strategy is to attempt to remove critical points
from f0. To give the main idea, assume n = 6 and f0 has two critical points u, v ∈ W . The hypothesis on
homology implies that u, v have index difference 1. Assume u has index 3 and v has index 4, with levels
f0(u) = 1/4 and f0(v) = 3/4. Write M = f−1(1/2). Crossing these critical points exhibit M0 and M1

as the results of surgeries on M along spheres Pu, Pv ⊆ M . The hypothesis on homology implies that the
intersection number of Pu and Pv is ±1. Using the Whitney trick we can then suppose Pu and Pv have a
single (transverse) intersection point. Then a neighbourhood of Pu ∪Pv in M has a standard model and we
can write down a deformation of f0 which cancels the critical points.

Remark. One important application of the h-cobordism theorem is the generalized Poincaré conjecture for
higher dimensions: If n ≥ 5 and Mn is homotopy equivalent to Sn, then Mn is homeomorphic to Sn. It
also leads to classification results for higher-dimensional manifolds with topological restrictions, e.g. any
2-connected 6-manifold is diffeomorphic to a connected sum of copies of S3 × S2.

Exercises

1. Let Fr be the free group on r generators and γ ∈ Fr. For n ≥ 4 use surgery on a connected sum of
r copies of S1 × Sn−1 to construct an n-dimensional manifold with fundamental group Fr/⟨γ⟩. Why
does this not work if n = 3?
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Solution. If M0 is the connected sum of r copies of S1×Sn−1, then π1(M0) =

r times︷ ︸︸ ︷
Z ∗ · · · ∗ Z = Fr by the

Seifert-Van Kampen theorem; the intersections contract onto Sn−1, which is simply-connected. (This
requires n ≥ 3.) Representing γ by a loop in M0, we perform surgery along γ to get a manifold M .
Writing N(γ) for a tubular neighbourhood of γ, the Seifert-Van Kampen theorem gives

π1(M) = π1(M0 \N(γ)) ∗π1(∂N(γ)) π1(B
2 × Sn−2) = π1(M0 \N(γ)) ∗⟨γ⟩ 1,

noting that π1(S
n−2) = 1 since n ≥ 4. We also have

π1(M0) = π1(M0 \N(γ)) ∗π1(∂N(γ)) π1(N(γ)),

and the map π1(∂N(γ))→ π1(N(γ)) is an isomorphism as Sn−2 → Bn−2 induces the trivial map on
trivial groups, so π1(M0 \N(γ)) = π1(M0). Hence

π1(M) = π1(M0)/⟨γ⟩ = Fr/⟨γ⟩.

2. Show that RP2#RP2#RP2 and T 2#RP2 are homeomorphic.

Let CP2 denote CP2 with reversed orientation. Show that no two of

S2 × S2, CP2#CP2, CP2#CP2

are homeomorphic, but (S2 × S2)#CP2 is homeomorphic to CP2#CP2#CP2.

(Complex geometry may be helpful here. Blowing up a point on a complex surface corresponds to

connected sum with CP2.)

Solution. The fact RP2#RP2#RP2 ∼= T 2#RP2 is a classic part of the classification of surfaces, which

I won’t reproduce here. For the 4-manifolds S2 × S2,CP2#CP2,CP2#CP2, note that they all have
Betti numbers 1, 0, 2, 0, 1. So homology groups aren’t enough to distinguish them, so we look at the
ring structure on cohomology instead, i.e. the intersection form.

• For S2×S2, generators forH2 are given by S2×{∗} and {∗}×S2, which intersect transversely and
with positive orientation at the single point (∗, ∗). The self-intersections are zero, since S2 × {∗}
is disjoint from S2 × {∗′}, so the intersection form is given by

QS2×S2 =

Å
0 1
1 0

ã
.

• For CP2#CP2, the generators for H2 are given by lines CP1 in each copy of CP2. The self-
intersection of a line in CP2 is 1, and we can take a line in one copy not meeting the other copy,
so the intersection form is given by

QCP2#CP2 =

Å
1 0
0 1

ã
.

• For CP2#CP2, we have almost exactly the same story as for CP2#CP2, except the self-intersection

of a line in CP2 is −1, so the intersection form is given by

QCP2#CP2 =

Å
1 0
0 −1

ã
.

Now these matrices are not congruent; QCP2#CP2 is positive-definite, while the others are indefinite,
and QS2×S2 is even, while QCP2#CP2 is odd. Hence we see that the manifolds are not homeomorphic.

However, note that (S2×S2)#CP2 = (CP1×CP1)#CP2 is the blow-up of CP1×CP1 at a point, while

CP2#CP2#CP2 is the blow-up of CP2 at two points. From what we saw in the section on blowing up
these are isomorphic complex varieties, and therefore homeomorphic manifolds.

3. Let X be the 4-manifold corresponding to the A2 graph . Show that π1(∂X) = Z/3.
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Solution. Recall that ∂X was the quotient of SU(2) ∼= S3 by the finite subgroup corresponding to the
Dynkin diagram in question. For A2 this is the cyclic rotation group of the (2+1)-gon, i.e. C3. Hence
π1(∂X) = π1(S

3/C3) = Z/3.

4. Let W be an oriented (2n+ 1)-manifold with boundary M . There is a boundary map

∂ : Hn+1(W,M)→ Hn(M).

Use duality and the long exact sequence in cohomology to show that the image of ∂ is an isotropic
subspace in Hn(M) with respect to the intersection form (i.e. ∂a · ∂b = 0 for all a, b) of dimension
1
2 dimHn(M). In the case when n is even, deduce that the signature of M is zero.

For an oriented surface Σ of genus g denote λi(Σ) = Λg+i(H1(Σ)). Let Σ0,Σ1 be oriented surfaces of
genus g0, g1 respectively and let W be a cobordism from Σ0 to Σ1. Show that W defines, up to an
overall factor, linear maps

λiW : λi(Σ0)→ λi(Σ1).

Investigate how your construction behaves with respect to composition of cobordisms.

(Hint: A p-dimensional subspace of a vector space V defines an element in Λp(V ), up to a factor.)

Solution. Looking at Poincaré duality on the long exact sequence of the pair, we have

Hn+1(W,M ;R) Hn(M ;R) Hn(W ;R)

Hn(W ;R) Hn(M ;R) Hn+1(W,M ;R).

∂ i∗

i∗

PD

δ

PD PD

Now the universal coefficients theorem implies that i∗ is dual to i∗, so

dimHn(M ;R)− dim im ∂ = dimHn(M ;R)− dim im i∗ by vertical PD

= dimHn(M ;R)− dim im i∗ by duality

= dimker i∗ by rank-nullity

= dim im ∂ by exactness.

Hence L = im ∂ has dimension 1
2 dimHn(M ;R). For α ∈ Hn(M ;R), β ∈ Hn(W ;R), we have

⟨α ∪ i∗β, [M ]⟩ = ⟨i∗β, [M ] ∩ α⟩ = ⟨β, i∗([M ] ∩ α)⟩.

Then for any γ ∈ Hn(W ;R) we get

⟨i∗γ ∪ i∗β, [M ]⟩ = ⟨β, i∗([M ] ∩ i∗γ)⟩ = ⟨β,��>
0

i∗∂([W ] ∩ γ)⟩ = 0,

so i∗γ ∪ i∗β = 0. Therefore im ∂ ∼= im i∗ are isotropic for the intersection / cup products. Taking
a basis v1, . . . , vr for L, we can find wj with vi · wj = δij , and moreover wj · wj = 0 after adding a
suitable multiple of vj . This gives a basis for Hn(M ;R) with respect to which the intersection form is
a direct sum of factors of the form Å

0 1
(−1)n 0

ã
.

If n is even these factors have signature zero, and hence the signature of M is zero.

For W a cobordism from Σ0 to Σ1, we then have that the kernel L of

R2g0 ⊕ R2g1 = H1(Σ0;R)⊕H1(Σ1;R)→ H1(W ;R)

has dimension g0 + g1, and is isotropic for the intersection form. Now the maximal dimension of an
isotropic subspace of H1(Σ) = R2g is g, by writing down the intersection form explicitly. Therefore
L = L0⊕L1 for L0 a g0-dimensional isotropic subspace of H1(Σ0;R) and L1 a g1-dimensional isotropic
subspace of H1(Σ1;R).

???

5. Show that CPn is not a boundary when n is even. Construct manifolds Wm with ∂Wm = CP2m+1.

(Hint: Consider a map from CP2m+1 to quaternionic projective space HPm.)
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Solution. From 4. we have that the middle Betti number of an even-dimensional boundary is even, so
since H2m(CP2m) = Z has rank 1 we see that CP2m cannot be a boundary. Now for CP2m+1 consider
the fibre bundle

CP2m+1 = (C2m+2 \ {0})/C× = (Hm+1 \ {0})/C× → (Hm+1 \ {0})/H× = HPm.

The fibres are given by

H×/C× =

ßÅ
z w
w z

ã
: |z|2 + |w|2 ̸= 0

™ßÅ
z 0
0 z

ã
: |z| ≠ 0

™ =

ßÅ
1 z
z 1

ã™
∪
ßÅ

0 1
1 0

ã™
= C ∪ {∞} = S2,

and so we can glue 3-balls B3 onto the fibres (using Alexander’s trick for compatibility) to get a B3

bundle Wm over HPm with boundary the S2 bundle CP2m+1 over HPm.

6. The Hopf invariant of a smooth map f : S4k−1 → S2k can be defined as follows. Choose a 2k-form
ω on S2k of integral 1. Then choose a (2k − 1)-form α on S4k−1 such that f∗(ω) = dα. The Hopf
invariant is

H(f) =

∫
S4k−1

α ∧ f∗(ω).

Show that this is well-defined, independent of the choices of ω, α.

Let X be a closed manifold of dimension 4k which has a decomposition X = B4k ∪ N where N is a
tubular neighbourhood of a 2k-sphere Σ ⊆ X with Σ · Σ = 1, so ∂N is a (4k − 1)-sphere. If Ω is a
closed 2k-form on X with integral 1 over Σ show that∫

X

Ω2 = 1.

By constructing a suitable form Ω, show that the Hopf invariant of the map S4k−1 = ∂N → S2k is 1.

7. Let M be the 8-manifold constructed in the first section from a vector bundle V → S4, with d =
n+−n− = 1 and Y = ∂M . Let Z be the space obtained by adding a cone over Y to M . Suppose that
Y is diffeomorphic to S7 so that Z is a smooth 8-manifold. Use the signature theorem to show that
p2 = (1/7)(45 + q2) where q = 2(n+ + n−). Hence derive a contradiction to the assumption that Y is
diffeomorphic to S7 for certain values of n+, n−.

8. Use Alexander duality to show that a knot K ⊆ S3 bounds an oriented surface Σ embedded in S3 \K
(a Seifert surface). The surface Σ is homeomorphic to a closed surface of some genus g, minus a disc.
Now perform surgery on K with coefficient c > 0 to construct a 3-manifold Y which is the boundary
of a 4-manifold X. Show that

• H2(X) = Z and a generator is represented by an embedded surface in X of genus g and self-
intersection c.

• H1(Y ) = Z/c.

(For the first part, recall that H1(S3 \K) can be identified with homotopy classes of maps from S3 \K
to S1.)

8 Geometric Invariant Theory - Tom Coates

GIT is a way of taking quotients in algebraic geometry.

Why? Examples: Pn = (Cn+1 \ {0})/C∗, Gr(k,N), toric varieties, projective hypersurfaces / complete
intersections. Moduli problems: want to make a choice of coordinates and then remove that choice. For
Gr(k,N), a k-dimensional subspace of CN is determined by a matrix of spanning vectors:

k×N︷ ︸︸ ︷Ö
∗ · · · ∗
...

. . .
...

∗ · · · ∗

è
,

up to change of basis, which is an action of GL(k). We want to quotient by GL(k) to get Gr(k,N).
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Context. Symplectic reduction (a way of taking quotients in symplectic geometry) is often equivalent to
the GIT quotient (Kirwan, Kemp–Ness). Things to look at from here: infinite-dimensional analogues of
symplectic reduction (Atiyah and Bott, moduli of vector bundles; Donaldson, Kähler–Einstein metrics and
K-stability), birational geometry via variation of GIT quotient or VGIT (Thaddeus, Dolgachev–Hu, . . . ),
derived categories and wall crossings (Ed Segal, . . . ).

References.

• Main source: “Notes on GIT and symplectic reduction”, Richard Thomas.

• “Mirror symmetry for toric complete intersections”, Alexander Givental.

• “Topology of torus actions on symplectic manifolds”, Michéle Audin.

• Francis Kirwan’s thesis.

Varieties

We recap some of the basic setup for algebraic geometry, working over C.

Affine varieties. Affine space Cn is associated to the ring of polynomial functions on it: C[x1, . . . , xn].
An affine variety is a locus X = {p1 = · · · = pk = 0} ⊆ Cn for some p1, . . . , pk ∈ C[x1, . . . , xn]. It is
associated with the ring of restricted polynomials OX = C[x1, . . . , xn]/(p1, . . . , pk). We can reverse the
correspondence: given a suitable ring OX , picking generators g1, . . . , gn ∈ OX gives C[x1, . . . , xn] ↠ OX ,
xi 7→ gi, corresponding to X ↪→ Cn via (g1, . . . , gn).

Projective varieties. The motto is “just work C∗-equivariantly”. A C∗ action on a ring is a grading,
so we work with graded polynomial rings (for simplicity we will assume everything is generated in degree
1). Projective space Pn corresponds to the graded ring C[x0, . . . , xn]. A projective variety is a locus
X = {p1 = · · · = pk = 0} for some homogeneous (i.e. C∗-equivariant) polynomials p1, . . . , pk ∈ C[x0, . . . , xn].
It is associated with the graded ring of restricted polynomials C[x0, . . . , xn]/(p1, . . . , pk). By compactness,
the only global functions we get are constants (C∗-invariant = degree 0 = constant), so C[x0, . . . , xn] is not
the ring of functions. What is it?

We have an associated affine variety

X̃ = {p1 = · · · = pk = 0} ⊆ Cn+1,

which is C∗-equivariant, i.e. it is a cone through the origin.

The projective variety X is the parameter space of the lines through the origin making up X̃. So we get
a tautological line bundle OX(−1), where OX(−1)|x = {the line in X̃ defined by x} for x ∈ X. The total
space of OX(−1) naturally maps to X̃:
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This is the blowup of the cone vertex!

Each xi ∈ C[x0, . . . , xn] is a linear function on Cn+1, so by pullback we get a function on the total space
of OX(−1) which is linear on the fibres. Similarly, a degree r homogeneous polynomial gives a function on
OX(−1) which scales with degree r along the fibres. In other words, degree 1 elements of C[x0, . . . , xn] are
sections of OX(−1)∨ = OX(1), and degree r elements are sections of SymrOX(−1)∨ = OX(r). Hence

C[x0, . . . , xn]/(p1, . . . , pk) =
∞⊕
k=0

H0(OX(k)),

so we recover the graded ring from the line bundle OX(1). (To reverse the correspondence, choosing
generators for H0(X,L) for a suitable line bundle L gives an embedding X → Pn where n = dimH0(X,L).)

Quotients

Suppose we have a connected reductive complex algebraic group G. This means we have a compact real
Lie group K < G such that G is the complexification of K. Examples: K = S1, G = C∗; K = (S1)m,
G = (C∗)m; K = SU(m), G = SL(m,C).

Consider an (algebraic) action of G on a projective variety X, where we want to take the quotient “X/G”.
Suppose the action can be factored through SL(n+ 1,C) acting on Pn:

G X

SL(n+ 1,C) Pn

The choice of this lifting G→ SL(n+ 1,C) is called linearization. (You might ask, why SL(n+ 1,C) rather
than just Aut(Pn) = PSL(n+ 1,C)? It is because the action of PSL(n+ 1,C) doesn’t lift to O(−1).)

Issues. The topological quotient is not Hausdorff (essentially becauseX is compact but G is non-compact).
There are low-dimensional orbits in the closure of high-dimensional orbits. For example, take the action of
C∗ on Cn+1 from the definition of Pn.
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The origin is in the closure of every other orbit.

Removing the low-dimensional orbits does not fix the problem. Consider C∗ ↷ C2 by λ ·(x, y) = (λx, λ−1y):

The typical orbit is xy = α ∈ C∗, but we also have the x-axis with the origin removed, the y-axis with the
origin removed, and the origin. Removing the lower dimensional orbit (the origin) doesn’t solve the issue,
as the x-axis and y-axis cannot be separated from each other. Hence we need some subtler invariant than
dimension.

Affine quotients. There is a natural construction of “naive” algebraic quotients for group actions on
affine varieties: the ring of functions on the quotient should consist of the functions which are invariant
under the action. Hence X/G = Spec (OX)G. In the second example above we have C[x, y]C∗

= C[xy], so
this gives A1; the bad orbits are coalesced into a single point corresponding to {xy = 0}. However, in the
first example we have C[x, y]C∗

= C[x, y] ∩ C(y/x) = C, so the quotient is a single point which is no good.

GIT. The point of GIT is to provide some subset (the “unstable locus”) in a canonical way, so that the
GIT quotient

X �G = (X \ {unstable points})/G

is well-behaved.

Before defining the unstable locus, we describe a direct construction of the resulting quotient. From the
linearization G ↪→ SL(n+ 1,C) we have an action G↷ H0(OX(r)) for each r. Then

X �G = Proj

Å ∞⊕
r=0

H0(X,OX(r))G
ã
.

(The fact that this is a finitely-generated graded ring, so we do get a sensible projective variety, is a lemma
that needs proving.)

To apply this definition in our affine examples, we need to come up with a “linearization”, i.e. a lift of the
C∗ action to some line bundle L over Cn. Of course, L must be trivial, so we just need to choose a weight
for C∗ to act on one extra coordinate.

Example. Consider C∗ acting on Cn+1 with weights (1, . . . , 1) as in the definition of Pn. Our linearization is
a choice of p ∈ Z so that C∗ acts on the trivial line bundle L, total space Cn+1×C, with weights (1, . . . , 1, p).
Then L⊗r has weights (1, . . . , 1, pr), and

H0(Cn+1, L⊗r) = {degree pr homogeneous polynomials} = C[x0, . . . , xn]pr,

so the GIT quotient is

Proj

Å ∞⊕
r=0

C[x0, . . . , xn]pr
ã
=


∅ p < 0,

point p = 0,

Pn p ≥ 1.

Moreover, the line bundle induced by L on the quotient is O(p).
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Stability

As usual with Proj, we can relate our general construction to concrete projective embeddings. For each
r ≥ 0, the invariant sections H0(X,OX(r))G can be evaluated at points of X giving a complex number
defined up to scale, since OX(r) is a potentially non-trivial line bundle. In this way we have a rational
map X 99K P(H0(X,OX(r))G)∨ given by x 7→ [evx]. (In other language, this is just the map given by the
complete linear system |OX(r)|.) It is defined only on the locus where evx ̸= 0, i.e. where there is some
invariant section s ∈ H0(X,OX(r))G with s(x) ̸= 0.

Claim. The GIT quotient X �G is the image of this rational map for r ≫ 0.

Definition. We say x ∈ X is semi-stable if ∃s ∈ H0(X,OX(r))G with s(x) ̸= 0 for r ≫ 0. Otherwise, we
say x is unstable.

Claim. The morphism Xss = {semi-stable points}↠ X �G is then the usual quotient, so X �G = Xss/G.

Definition. We say x ∈ X is stable if x is semi-stable,
⊕∞

r=0H
0(X,OX(r))G separates orbits near x, and

the stabilizer Stabx is finite. (Technically also with an infinitesimal version of this condition. We are not
intending to thoroughly cover technicalities here.)

What does separating orbits mean? By semi-stability we have s ∈ H0(X,OX(r))G with s(x) ̸= 0, which
gives a trivialization of OX(r) on U = {s ̸= 0} ∋ x; OX(r)|U

∼−→ OU . “Separating orbits near x” means if
x, y ∈ U are in distinct orbits then some function on U vanishes at x but not y.

We then have Xs ⊆ Xss ↠ X �G, and the restriction Xs → X �G is “good” in the sense that only 1 orbit
is collapsed for each point in the image.

Example. Consider C∗ acting on C2 by λ · (x, y) = (λx, λ−1y). The single orbits xy = α for α ̸= 0 give the
stable locus, while xy = 0 which contains 3 orbits only consists of semistable points.

Hilbert–Mumford stability criterion

Working in upstairs in the line bundle OX(−1), we have a clean characterization of stability. Take x̃ to be
a lift of x ∈ X to the total space of OX(−1). Then:

• x is semi-stable iff G · x̃ does not contain the origin of any fibre.

• x is stable iff G · x̃ is closed with finite stabilizer.

We can optimize this criterion further. Consider an arbitrary 1-parameter subgroup C∗ ≤ G. For x ∈ X,
the orbit under this subgroup has a limit x0 = limλ→0,λ∈C∗ λ · x, which is a fixed point of C∗. This then
gives us a weight ρ ∈ Z for the action of C∗ on the fiber OX(−1)|x0 .

Theorem (Hilbert–Mumford). • If ρ ≤ 0 for all 1-parameter subgroups then x is semi-stable.

• If ρ < 0 for all 1-parameter subgroups then x is stable.

• Otherwise, x is unstable.

Exercises

1. Consider Pn = Cn+1 � C∗ again. Use the criterion to check that {0} is the unstable locus.

2. Consider (C∗)2 acting on C4 with weights

Å
1 1 0 −1
0 0 1 1

ã
. Take the linearization which gives weights

(−a,−b) to the trivial line bundle.

(a) Set a = b = 1. Show that the unstable locus is {x = y = 0} ∪ {z = w = 0}. Write X+ =
Xss/(C∗)2, and show that it is a P1-bundle over P1, P(O⊕O(−1)), the blowup of P2 at a point.

(b) Set a = −1, b = 2. Show that the unstable locus is {x = y = z = 0} ∪ {w = 0}. Write
X− = Xss/(C∗)2, and show that X− ∼= P2.

(c) Say VGIT: X± are both C4 \ {· · · }/(C∗)2, giving a birational map between them. (Blow-up!)

3. Construct the Grassmannian Gr(k,N) as a GIT quotient.
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9 Morse Theory - Mikhail Karpukhin

The basic setup: we have a compact1 n-manifold, and a smooth function f :M → R. The idea is to study
the topology of M using f ; using the critical points

Crit(f) = {p ∈M : p critical point of f},

and the sub-level sets
M c = f−1(−∞, c) = {x ∈M : f(x) < c}.

The following are some important examples of this setup, which we will keep revisiting. For a manifold
drawn in Euclidean space we take the height function as our f .

Plan / Overview

• Describe computation of the homology Hk(M) using f (Morse homology).

• Mention contemporary research in Morse theory; applying inspired ideas to infinite-dimensional man-
ifolds. (For example solutions to PDE’s are often characterized as critical points of certain functionals
on infinite-dimensional function spaces.)

References

• “Morse Theory”, Milnor

• “Morse Theory and Floer Homology”, Audin and Damian

For a complete treatment of the basic theory, and applications to Riemannian geometry (e.g. length func-
tional on geodesics) see Milnor, but for the homological treatment and connections to symplectic geometry
see Audin and Damian.

Critical points

Definition. A critical point p ∈M of f is a point where dfp = 0 in TpM .

Take a metric g on M . We define the gradient vector field ∇f by ⟨∇f,X⟩ = df(X). Then p is a critical
point iff ∇f(p) = 0. The flow lines of −∇f give trajectories along which a drop of water placed on the
manifold would run down.

1For many things we say here compactness isn’t crucial
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Why do we care about Crit(f)? Because of the following:

Proposition. If f−1[a, b] contains no critical points, then Ma ∼=diffeo M
b.

Proof. Define via bump functions

ρ(x) =


1

|∇f |2
on f−1[a, b]

0 outside some neighbourhood of f−1[a, b],

and consider the vector field X = −ρ ·∇f with flow φt globally defined by compactness. If φt(q) ∈ f−1[a, b]
for small t, then

d

dt

∣∣∣∣
t=0

f(φt(q)) = ⟨∇f,X(q)⟩ = −ρ(q)|∇f(q)|2 = −1.

Then by integrating, φb−a maps M b →Ma and is a diffeomorphism by construction.

So if we want to build up the topology on M from the sub-level sets M t, we need to understand how the
topology of M t changes as t passes through critical values of f . (Think about how this applies in the main
examples.)

Morse functions

To this end, fix a critical point p ∈ Crit(f), with f(p) = c. Suppose for simplicity that f−1(c)∩Crit(f) = {p}.
(This is true in our main examples, and is not a serious restriction.)

Our idea is that the interesting behaviour occurs in a neighbourhood of p, where the gradient flow breaks
down, and so we want f to be easy to analyse (e.g. via Taylor expansion) near p.

Definition. For p ∈ Crit(f), the Hessian Hessp(f) is a bilinear form on TpM given by

(X,Y ) 7→ X(‹Y (f)),

where ‹Y is any extension of Y to a vector field in a neighbourhood of p. It is well-defined and symmetric,
given in local coordinates by Ö

∂2f
∂x1 ∂x1

· · ·
· · · ∂2f

∂xi ∂xj
· · ·

· · · ∂2f
∂xn ∂xn

è
.

Definition. A critical point p ∈ Crit(f) is non-degenerate if Hessp(f) is a non-degenerate bilinear form.

Definition. The function f is Morse if all its critical points are non-degenerate.

Lemma (Morse Lemma). Let p ∈ Crit(f) be non-degenerate. Then there exists some coordinate system in
a neighbourhood of p such that

f(x) = f(p) + x21 + · · ·+ x2n−i − (x2n−i+1 + · · ·+ x2n).

Sketch proof. We have f(x) − f(p) =
∫ 1

0
d
dtf(tx)dt =

∑
i xi

∫ 1

0
∂f
∂xi

(tx)dt =
∑

i xigi(x), with gi(p) = 0.
Applying this to each gi gives f(x) = f(p) +

∑
i,j xixjhij(x) with Hessp(f) = (hij(p)). We then bring this

to the desired form using a change of variables akin to diagonalization of the bilinear form Hessp(f).
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(See Milnor’s book for a proper proof.)

Definition. The index of p is indp(f) = i, which is uniquely determined as the number of negative eigen-
values of the Hessian.

Using this, we can understand how the topology ofM c changes as we pass through a non-degenerate critical
point:

By a similar argument to the gradient flow from before, we see that M c+ε is obtained from M c−ε by
attaching a thickening of the i-cell where x+ = 0.

Theorem. Suppose that f−1[a, b] contains a single non-degenerate critical point. Then

M b ≈homeo M
a ∪Si×Dn−i Di ×Dn−i.

Up to homotopy equivalence M b is given by attaching an i-cell to Ma.

Remark. The only reason we have a homeomorphism rather than a diffeomorphism is that the naive
attachment of a thickened i-cell has corners and hence is not smooth. It is possible to choose a canonical
way to smooth these corners up to diffeomorphism, leading to the notion of handle attachment for smooth
manifolds, and then the theorem carries over.

We can check how this works out in our main examples:
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Theorem. A generic (in the sense of Baire category) smooth function on a compact manifold is Morse.

Remark. The assumption f−1(c) ∩ Crit(f) = {p} is also true generically.

Corollary. Every compact manifold is homotopy equivalent to a cell complex.

Morse homology

From now on we assume f is a Morse function (with distinct critical values).

To extract quantitative information about the topology from a given Morse function, we want to understand
how this cell decomposition works in more detail. To construct the chain complex computing cellular
homology we want to know what the boundaries of the attached i-cells are in terms of f , and to this end
we want an intrinsic characterization of the cell decomposition.

Definition. For p ∈ Crit(f), let φt be the flow of −∇f . The unstable manifold at p is

Wu(p) = {x ∈M : lim
t→∞

φt(x) = p},

and the stable manifold is
W s(p) = {x ∈M : lim

t→−∞
φt(x) = p}.

For example:
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Proposition. For p ∈ Crit(f), Wu(p) ∼= D̊ind(p) is an open disc of dimension ind(p).

Sketch proof. The flow eventually bringsWu(p) into a neighbourhood of p, and we can use the Morse lemma
to see that in suitable coordinates it is then the interior of the attached i-cell seen previously.

Similarly, the stable manifold W s(p) is a disc of dimension n − ind(p). (There is a duality using the two
Morse functions f and −f .)

The unstable manifolds hence give a natural cell complex structure. What are the boundary maps? Consider
our example, take a flow line from p to s and “deform” it towards the boundary. It can be freely deformed
until it encounters another critical point, at which point it becomes a “broken trajectory”.

Theorem.

If f is Morse–Smale︷ ︸︸ ︷
Under some condition on f , the boundary is given by

∂Wu(p) =
∑

ind(q)=ind(p)−1

npq ·W
u
(q),

where npq is the number of flow lines from p to q, counted with appropriate signs.

Note that Wu(p) has dimension ind(p), and W s(q) has dimension n− ind(p) + 1, so if they are transverse
Wu(p) ∩W s(q) has dimension 1 and there are only finitely many flow lines from p to q.

Definition. The function f is called Morse–Smale if for all p, q ∈ Crit(f) we have W s(p) ⋔Wu(q), i.e. the
stable and unstable manifolds intersect transversely.
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With these npq’s we then get a chain complex for a Morse–Smale function f , computing the cellular homology
of M :

Ck =
⊕

ind(p)=k

Z · p, ∂p =
∑

ind(q)=ind(p)−1

npq · q.

Morse inequalities

Theorem. Let Nk = rankCk. We have

k∑
i=0

(−1)k−iNi ≥
k∑

i=0

(−1)k−ibi(M),

with equality when n = k. Moreover Ni ≥ bi(M).

Proof. This is a general statement about chain complexes.

Remark. The case n = k computes the Euler characteristic. From Ni ≥ bi(M) we can deduce the existence
of critical points for Morse functions from the topology of M .

We can restrict more than just homology with Morse theory:

Theorem. Suppose that f is Morse with no critical points of index 1. Then M is simply-connected.

Proof. Note that H1(M) = 0 by the Morse inequalities, but this is not enough. By Sard’s theorem, we can
homotope any loop in M to be transverse to all stable manifolds. Then it can only intersect the index 0
ones, so the loop is contained in a single cell, a disc of dimension at least 2, and hence contracts.

Exercises

Exercise. Check that the following untilted torus example is not Morse–Smale:

Tilt it slightly to fix this, and compute the Morse complex.

Exercise. Show that the Betti numbers satisfy Poincaré duality bk(M) = bn−k(M) using the Morse com-
plex. (Recall that bk(M) = rankHk(M ;Z).)

Exercise. Suppose f is a Morse function with exactly two critical points. Show that M ≈homeo S
n.

Exercise. Is it true that for any M there exists a Morse function f with Nk = bk(M)?

Exercise. Suppose f is Morse, and X = ∇f . Show that the index of X (i.e. the signed count of the zeros
of X) is the Euler characteristic χ(M). This is the starting point for one of the proofs of the Poincaré–Hopf
theorem.

Exercise. Take M = CPn, with

f([z0 : · · · : zn]) =
∑

j j|zj |2∑
j |zj |2

.

Show that f is Morse, and use it to compute the homology.
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Notable applications

I - Generalized Poincaré conjecture: If M is a manifold of dimension n homotopy equivalent to Sn, then
M is homeomorphic to Sn.

In dimensions n ≥ 5 this can be proved using Morse theory. (See Milnor’s “Lectures on the h-cobordism
theorem”.)

II - “Morse theory” on infinite-dimensional spaces:

(a) Low-dimensional topology; instanton homology (gauge theoretical functionals).

(b) Symplectic geometry (counting closed orbits, Floer homology).

(c) Riemannian geometry:

• Length functional on path space; critical points are geodesics, index related to Jacobi fields.

• Bott periodicity: πi(U(∞)) = πi+2(U(∞)).

• Finding closed geodesics:

Theorem (Birkhoff). For all metrics g on S2 there exists a non-trivial closed geodesic.

“Proof”. Assume Morse theory works on the loop space Ω(S2) for the length functional.
Since πi(Ω(S

2)) = πi+1(S
2) we have π1(Ω(S

2)) = π2(S
2) = Z, so there must be a critical

point of index 1 by the Morse inequalities.

• More generally, interactions between curvature and topology:

– Sphere theorem: 1
4 < K ≤ 1 implies M ≈homeo S

n.

– Minimal surface theory (critical points of area functional).

Bonus exercises

(1) View the torus as the square [0, 2π] × [0, 2π] with side identifications, and consider the function
(x, y) 7→ sin(x) + sin(y). Compute the Morse complex.

(2) If A be a self-adjoint operator on Rn, then

x 7→ ⟨Ax, x⟩
⟨x, x⟩

is invariant under x 7→ λx, and hence induces a function fA : RPn → R. When is it Morse? Describe
critical points and their indices when it is.
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