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o If f*Kx = g*Ky, then D?(X) = DP(Y).
o If f*Kx > g*Ky, then D2(X) = (Db(Y),...).
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Take a roof f g of smooth projective varieties.
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= MMP passes to smaller and smaller admissible components.

Example (Crepant resolutions should be D-unique)

All crepant (Ky = m*Kx) resolutions 7 : X — X of a Gorenstein
singularity are K-equivalent = conjecturally D-equivalent.

= At the level of D?(—), MMP stops at a smooth minimal model.
(when a crepant resolution exists)
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desingularization of D?(X).
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Minimal Resolution Conjecture (Bondal-Orlov '02)

e DP(X) has a minimal “nc-desingularization”, which embeds fully
faithfully (SOD) in all other desingularizations, and hence is unique.

o If 7: X — X is a crepant resolution, then D?(X) is the minimal
desingularization of D?(X).

= "Categorical’ MMP always stops at a smooth minimal model.
(crepant resolution = the categorical minimal model is geometric)

Remark (“stacky crepant resolutions”)

By [BKR], crepant resolutions of certain (cDV) quotient singularities are
D-equivalent to the (smooth) orbifold quotient [X/G].

Generalizing this, D?([X/G]) should always be the minimal
desingularization for the coarse moduli space X/G.
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Warning: The minimal resolution conjecture is volatile

© Need to define “nc-desingularization”.
@ It's not clear what the correct definition should be.

© With a naive definition, there are counter-examples.
(arguably non-geometric ones)

Even with a good definition, there is no clear proof approach; how do you
construct a functor between arbitrary desingularizations?
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Other context

Why else do we care?

@ Appears naturally in homological mirror symmetry (e.g. degenerations,
or proving mirror symmetry for singularities via the resolution)

@ Appears naturally in homological projective duality (e.g. K3
constructed from a singular cubic fourfold giving a categorical
resolution of the Kuznetsov component).

@ (Conjectural) unique minimal resolutions lead to (conjectural)
invariants of singularities (like dual graphs of ADE surfaces).

@ Like DK-conjecture, predicted equivalences between minimal
resolutions can be unexpected, hinting at deeper structure in the
constructions used to build the categories involved.

@ There are actual hands-on constructions, allowing us to study
concrete examples, and we find interesting structure which is poorly
understood (e.g. null categories, relative singularity categories).
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Categorical resolutions

Suppose 7 : X — X is a resolution of singularities.

D*(X)

IR

Perf(X) — DP(X).

If m,m* =1 (i.e. «* fully faithful, 7, ess. surjective) <= m.03 = Ox,
we say X has rational singularities.

o Crepant resolution = rational singularities.

@ Terminal singularities = rational singularities.
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Categorical resolutions

Definition (Kuznetsov '08)

A weak categorical resolution is a smooth category 4 with adjoint functors

R

Perf(X) — DP(X)

satisfying m,m* = 1. It is weakly crepant if 7' = 7*, where 7* 4 7, 4 7. )

o If X has irrational singularities, D?(X) is not a categorical resolution!

@ It is a weakly crepant categorical resolution iff 7 : X = Xis crepant. |

The justification for this definition when X has irrational singularities is a
theorem of Kuznetsov and Lunts, which we will see in a moment.
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¢ = D°(X), * = 7. = 1 is a universal weak categorical resolution.
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Categorical resolutions

Recall: X is smooth iff Perf(X) is smooth.

Theorem (Lunts '10)

The category D®(X) is smooth for any separated scheme X of finite type
over a perfect field, provided a dualizing complex exists.

¢ = D°(X), * = 7. = 1 is a universal weak categorical resolution.

Take X = Spec k[x]/x?. Then D?(X) = (k[x]/x), and Extx(k, k) = k[6]
where |6] = 1, so by Koszul duality D?(X) = DP(k[f]) which is smooth
like A, This is not proper: dim(k[f]) = oo.
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A proper categorical resolution is a weak categorical resolution such that

e ¥ is "linear over D?(X)", i.e. Homy = RIx o Homy where
Homy(—, —) € DP(X), plus naturality conditions.

@ The functors 7*, 7, respect this structure.

Jargon: a module over the tensor category (Perf(X), ®).
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Categorical resolutions

Definition

A proper categorical resolution is a weak categorical resolution such that

e ¥ is "linear over D?(X)", i.e. Homy = RIx o Homy where
Homy(—, —) € DP(X), plus naturality conditions.

@ The functors 7*, 7, respect this structure.

Jargon: a module over the tensor category (Perf(X), ®).
v

Idea: Home(—, —) € DP(X) means Homs in € are finite rank (coherent)
relative to X = proper category relative to X.

Definition (Kuznetsov '08)

A relative Serre functor for a proper categorical resolution is an
endofunctor S : ¥ — % with a natural isomorphism

Home(x,S(y)) = Homx(Hom¢(y, x), Ox).

The resolution is strongly crepant if id¢ is a relative Serre functor.

) = = =
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Categorical resolutions

It follows that 7' = S o *, so strongly crepant = weakly crepant.

For  : X — X the relative Serre functor is — ® wg/X[dim;( —dim X],
and strong crepancy <= weak crepancy <= crepancy: wg y = Ogx.

Theorem (Kuznetsov—Lunts '15)

Proper categorical resolutions exist for any separated scheme of finite type
in characteristic zero.

v

Conjecture (Kuznetsov '08)

Strongly crepant categorical resolutions are minimal.
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Example: dual numbers

Take X = Spec k[x]/x? again. A proper categorical resolution has to be a
smooth and proper category (since k[x]/x? is finite over k).

Use the compactification Py, [6] = 1 of D?(X) = D®(k[f]). Beilinson:

which contains Berf(X) as the subcategory generated by Ojg.1) = cone(6).

Two perspectives:

@ Smoothing Perf(X): finding a smooth category with an object having
endomorphisms k[x]/x? (skyscraper sheaf in P1).

o Compactifying D?(X): compactifying Al to PL.
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Minimality, SOD’s and null categories

Suppose € is the minimal resolution:
€

{ &
T <?é7
TN

Perf(X) — D(X),

with ¢ = (¢, A). Then A C kerm, = kerm, = (K,.A) with A smooth
and proper: “categorical absorption of singularities” for ker .

Definition

We call ker 7, the null category (or kernel category).

Note: % is minimal iff A = 0 is the only possible absorption for ker ..
This is implied by the Calabi-Yau condition S|kerr, = [n], a weakening of
strong crepancy, when ker 7, is connected.
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Minimality, SOD’s and null categories

For the resolution Pé:(j) of the dual numbers, the null category is generated
by cone(¢), with endomorphisms k[y]/y? where |y| = 2.

Nodal singularities in all dimensions have categorical resolutions with null
categories generated by a (2 or 3)-spherical object. (Cattani et. al. '23)

Conversely, suppose we have a categorical absorption for X:

Db(X) = (x, A) with A C Perf(X). Then A C Perf(X) C €, giving

¢ = (€', A), where €” is a resolution for X'. Conversely, any such " can
be glued to A to give a resolution for D?(X) with the same null category.

{categorical resolutions of D?(X)}

= {categorical resolutions of the absorbing subcategory X'}.

Note: if X = D?(R), we get Dsg(X) = Dsg(R).
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Auslander algebras (Kuznetsov—-Lunts)

If S is a non-reduced thickening of a smooth variety Sp, there is a sheaf of
algebras As/s, on S which is a proper categorical resolution, with an SOD:

D®(As/s,) = (D°(So), .- ., D*(So))-

The number of components corresponds to the order of thickening.
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Auslander algebras (Kuznetsov—-Lunts)

If S is a non-reduced thickening of a smooth variety Sp, there is a sheaf of
algebras As/s, on S which is a proper categorical resolution, with an SOD:

D®(As/s,) = (D°(So), .- ., D*(So))-

The number of components corresponds to the order of thickening. |

The dual numbers k[x]/x? are a 2nd order thickening of a point, so we get
an SOD: D?(A) = (DP(pt), D?(pt)). The Auslander resolution D?(A) is
equivalent to the IP%:(z) resolution.

A

The Kuznetsov-Lunts existence theorem is proved by gluing Auslander
resolutions of thickenings of the blowup centres appearing in a resolution
of singularities.
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Constructions

NC(C)R’s (Van den Bergh)
In nice situations (e.g. quotient singularities), when X = Spec R, there can

be a reflexive R-module M such that A = Endg(M) has good homological
properties. It often gives a strongly crepant categorical resolution D?(A).

These “non-commutative resolutions” are a representation-theoretic
construction which can be viewed as giving special categorical resolutions
which have tilting objects.

A

NCCR'’s are not known to always give categorical resolutions due to a
technical obstruction, but it is expected and known in many cases.
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Definition

A Landau—Ginzburg model is a smooth variety U with a C*-action
(R-charge) and a global function W € H°(U, Oy) (the superpotential)
with is C*-equivariant of weight 2. Equivalently, the coordinate ring Oy is
graded such that |W| = 2.

v

Definition

The (derived) category of matrix factorizations on a Landau—Ginzburg
model is denoted MF(U, W), with objects given by C*-equivariant sheaves
with C*-equivariant endomorphisms d satisfying d> = W - id.

.
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Matrix factorizations

Definition

A Landau—Ginzburg model is a smooth variety U with a C*-action
(R-charge) and a global function W € H°(U, Oy) (the superpotential)
with is C*-equivariant of weight 2. Equivalently, the coordinate ring Oy is
graded such that |W| = 2.

\

Definition

The (derived) category of matrix factorizations on a Landau—Ginzburg
model is denoted MF(U, W), with objects given by C*-equivariant sheaves
with C*-equivariant endomorphisms d satisfying d? = W - id.

V.

Because W = dd + 1dd and 9x(W) = 9,(d)d + dd(d) are
null-homotopies, the category MF(U, W) is linear over Crit(W) C U.

A




Matrix factorizations
(o] lele]elelelele]e]e]

Matrix factorizations

e MF(U, W) is linear over Crit(W).




Matrix factorizations
(o] lele]elelelele]e]e]

Matrix factorizations

e MF(U, W) is linear over Crit(W).

e MF(U, W) is smooth, since we assumed U is smooth.




Matrix factorizations
(o] lele]elelelele]e]e]

Matrix factorizations

e MF(U, W) is linear over Crit(W).
e MF(U, W) is smooth, since we assumed U is smooth.
e MF(U, W) is proper iff Crit(W) is proper.




Matrix factorizations
(o] lele]elelelele]e]e]

Matrix factorizations

e MF(U, W) is linear over Crit(W).

e MF(U, W) is smooth, since we assumed U is smooth.
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@ The Serre functor on MF(U, W) is a shift of — ® wy.
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Matrix factorizations

e MF(U, W) is linear over Crit(W).

e MF(U, W) is smooth, since we assumed U is smooth.
e MF(U, W) is proper iff Crit(W) is proper.

@ The Serre functor on MF(U, W) is a shift of — ® wy.

\,

Example (Classical Knorrer periodicity)

E=(0 ﬁ O[-1] ) € MF(A?, xy) is an exceptional object, where
y
R-charge is |x| =0, |y| = 2. It is quasi-isomorphic to O/y, so
Hom(E,E) = Hom( O ; 0[-1] ,0/y)
= (0/y[1] = O/y) = O/(x, ).

This is a sheaf on Crit(xy) = {x = y = 0}, as expected.

™ = = =

.
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Matrix factorizations

Theorem (Knérrer periodicity (Orlov '06, ...))

Suppose X C U is a hypersurface cut out by f € H°(U, L). Then

DP(X) ~ MF(Tot LY, fo); T ( F é F @ L]-1] ),

where the fiber coordinate p € H°(Tot LV, L") is given R-charge |p| = 2.
.

Here Crit(fp) = {f = p = 0} U {Crit(f)} = X U LY |sing(x)-
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Matrix factorizations

Theorem (Knérrer periodicity (Orlov '06, ...))

Suppose X C U is a hypersurface cut out by f € H°(U, L). Then

DP(X) ~ MF(Tot LY, fo); T ( F é F @ L]-1] ),

where the fiber coordinate p € H°(Tot LV, L") is given R-charge |p| = 2.
.

Here Crit(fp) = {f = p = 0} U {Crit(f)} = X U LY |sing(x)-
This is proper over X iff X is smooth.
= matches the weak categorical resolution D?(X).

.

Idea (“Exoflops” Aspinwall '14)

We find proper categorical resolutions of X by compactifying Crit(fp)
inside Tot LV, i.e. partially compactifying Tot £V. |

_—————— = =
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What does Perf(X) correspond to? Vector bundles £ map to
f
(& == ¢&aL-1])=¢/p,

and in fact Perf(X) = MF;,_o(Tot LY, fp) is the subcategory supported
at {p = 0}.

v




Matrix factorizations
[e]e]e] lelelelele]e]e]

What does Perf(X) correspond to? Vector bundles £ map to
f
(& == ¢&aL-1])=¢/p,

and in fact Perf(X) = MF;,_o(Tot LY, fp) is the subcategory supported
at {p = 0}. The “geometric” part of the critical locus Crit(fp).
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What does Perf(X) correspond to? Vector bundles £ map to
f
(& == ¢&aL-1])=¢/p,

and in fact Perf(X) = MF;,_o(Tot LY, fp) is the subcategory supported
at {p = 0}. The “geometric” part of the critical locus Crit(fp).

If j: U< Uis a partial compactification, then j, - j* - j,.
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What does Perf(X) correspond to? Vector bundles £ map to
f
(& == ¢&aL-1])=¢/p,

and in fact Perf(X) = MF;,_o(Tot LY, fp) is the subcategory supported
at {p = 0}. The “geometric” part of the critical locus Crit(fp).

If j: U< Uis a partial compactification, then j, - j* 4 j,. = this
method produces weakly crepant proper categorical resolutions.
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What does Perf(X) correspond to? Vector bundles £ map to
f
(& == ¢&aL-1])=¢/p,

and in fact Perf(X) = MF;,_o(Tot LY, fp) is the subcategory supported
at {p = 0}. The “geometric” part of the critical locus Crit(fp).

If j: U< Uis a partial compactification, then j, - j* 4 j,. = this
method produces weakly crepant proper categorical resolutions.

\,

By Knérrer periodicity f ~ f + x? + y2, studying curves / surfaces also
gives results for higher-dimensional hypersurfaces.
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Example A;

Node X = {xy = 0} C A2, normalization X C Blg A2 = Tot O(—1)px.
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Example A;

Node X = {xy = 0} C A2, normalization X C Blg A2 = Tot O(—1)px.

w

X it (TotO(=1)g & O(=2)p,390) 751 (Tot O(—1)yz,390) = %

X —XE (4% xyp)
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Example A;

Node X = {xy = 0} C A2, normalization X C Blg A2 = Tot O(—1)px.
X — K2 (43, xp)

X g (TotO(=1)g ® O(=2)p,x3p) 73 (Tot O(~1)az, yp) = €

Here % = (Db(X), D?(pt)) matches Kuznetsov-Lunts gluing.

x| R g &
>§<“. W>@
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Example A;

x] & 5 e
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Example A;

x] & 5 e

o At p = 0: Perf(X)
o At g = 0: kerm, = D§([A/Z5]).
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o At p = 0: Perf(X)
o At g = 0: kerm, = D§([A/Z5]).

DE([AY/Z,]) = (O, Oo) = (D*(A'), D®(pt))




Example A;

o At p = 0: Perf(X)
o At g = 0: kerm, = D§([A/Z5]).

Db([AY/Z,]) = (O, Og) = (DP(A'), D*(pt))
= D{([A'/Z,]) = (D§(A'), DP(pt)) absorption!
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Example A;

So ¢ = (¢, DP(pt)).
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Example A;

So ¢ = (¢, DP(pt)). We can get € directly:
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Example A;

So ¢ = (¢, DP(pt)). We can get € directly:

F = MF(Tot(O, ® O(~1), — PL_), xyp) ~225 MF(A3, xyp)

Z—l )P,‘f
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Example A;

So ¢ = (¢, DP(pt)). We can get € directly:

F = MF(Tot(O, ® O(~1), — PL_), xyp) ~225 MF(A3, xyp)

Z—l )P,‘f

The null category at {q = 0} is DE(AY) = Perf(k[0]/6?), via Koszul
duality (work out R-charge — || =3 = 3-spherical object).
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By localization, Dsg(X) = MF,0y(Tot LY, fp) is the branch bit we are
seeing, separated from X, pre-compactification.
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By localization, Dsg(X) = MF,0y(Tot LY, fp) is the branch bit we are
seeing, separated from X, pre-compactification. For the node this is
AL — {0}, ie C[p*?], with |p| = 2.
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By localization, Dsg(X) = MF,0y(Tot LY, fp) is the branch bit we are
seeing, separated from X, pre-compactification. For the node this is
AL — {0}, ie C[p*?], with |p| = 2.

The choice of X with this particular Ds, compactifies the p = 0 hole.
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By localization, Dsg(X) = MF,0y(Tot LY, fp) is the branch bit we are
seeing, separated from X, pre-compactification. For the node this is

AL — {0}, ie C[p*?], with |p| = 2.

The choice of X with this particular Ds, compactifies the p = 0 hole. The
choice of resolution € compactifies the p = oo hole.
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seeing, separated from X, pre-compactification. For the node this is
AL — {0}, ie C[p*?], with |p| = 2.

The choice of X with this particular Ds, compactifies the p = 0 hole. The
choice of resolution 4 compactifies the p = oo hole. These are
geometrically independent!
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By localization, Dsg(X) = MF,0y(Tot LY, fp) is the branch bit we are
seeing, separated from X, pre-compactification. For the node this is
AL — {0}, ie C[p*?], with |p| = 2.

The choice of X with this particular Ds, compactifies the p = 0 hole. The
choice of resolution 4 compactifies the p = oo hole. These are
geometrically independent!

o Categorical resolutions of isolated hypersurface singularities should be
linear over P! in this way.
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By localization, Dsg(X) = MF,0y(Tot LY, fp) is the branch bit we are
seeing, separated from X, pre-compactification. For the node this is
AL — {0}, ie C[p*?], with |p| = 2.

The choice of X with this particular Ds, compactifies the p = 0 hole. The
choice of resolution 4 compactifies the p = oo hole. These are
geometrically independent!

o Categorical resolutions of isolated hypersurface singularities should be
linear over P! in this way. The {p # 0} part is €/ Perf(X), the
{q # 0} part is D?(X), and they intersect in Dgg(X).
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By localization, Dsg(X) = MF,0y(Tot LY, fp) is the branch bit we are
seeing, separated from X, pre-compactification. For the node this is
AL — {0}, ie C[p*?], with |p| = 2.

The choice of X with this particular Ds, compactifies the p = 0 hole. The
choice of resolution 4 compactifies the p = oo hole. These are
geometrically independent!

o Categorical resolutions of isolated hypersurface singularities should be
linear over P! in this way. The {p # 0} part is €/ Perf(X), the
{q # 0} part is D?(X), and they intersect in Dgg(X).

o The data of €/ Perf(X) — Dgg(X) should then determine the
resolution via gluing with D?(X) — Dsg(X).

o In particular, if Dgg(X’) = Dgg(X) then X’ and X should have the
same categorical resolution theory.

\,
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Example A

Cusp X = {y? = x3} C A2, normalization X C Blg A2. We get

% = MF(Tot O(—1)2, (y2 — x3q)p) = (D*(X), D(pt)).

-

Since Crit(y? — x3q) = {y = x®> = x3q = 0}, we get more non-reduced
fuzz at ¢ = 0.
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Example A

Cusp X = {y? = x3} C A2, normalization X C Blg A2. We get

% = MF(Tot O(—1)2, (y2 — x3q)p) = (D*(X), D(pt)).

-

Since Crit(y? — x3q) = {y = x®> = x3q = 0}, we get more non-reduced
fuzz at ¢ = 0.

@/ Perf(X) = MF([A%/Z2], y* — x*q)
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Example A

Cusp X = {y? = x3} C A2, normalization X C Blg A2. We get

% = MF(Tot O(—1)2, (y2 — x3q)p) = (D*(X), D(pt)).

-

Since Crit(y? — x3q) = {y = x®> = x3q = 0}, we get more non-reduced
fuzz at ¢ = 0.

@/ Perf(X) = MF([A%/Z2], y* — x*q) = MF(A?, x*q)
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Example A

Cusp X = {y? = x3} C A2, normalization X C Blg A2. We get

% = MF(Tot O(—1)2, (y2 — x3q)p) = (D*(X), D(pt)).

-

Since Crit(y? — x3q) = {y = x®> = x3q = 0}, we get more non-reduced
fuzz at ¢ = 0.

@/ Perf(X) = MF([A%/Z2], y* — x*q) = MF(A?, x*q) = D°(k[x]/x%),
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Example A

Cusp X = {y? = x3} C A2, normalization X C Blg A2. We get

€ = MF(Tot O(—1)2:2, (y* — x3q)p) = X , DP(pt)).

g

Since Crit(y? — x3q) = {y = x®> = x3q = 0}, we get more non-reduced
fuzz at ¢ = 0.

@/ Perf(X) = MF([A%/Z2], y* — x*q) = MF(A?, x*q) = D°(k[x]/x%),

and the null category at {q = 0} is Perf(C[x]/x3);
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Example A

Cusp X = {y? = x3} C A2, normalization X C Blg A2. We get

% = MF(Tot O(—1)2, (y2 — x3q)p) = (D*(X), D(pt)).

-

Since Crit(y? — x3q) = {y = x®> = x3q = 0}, we get more non-reduced
fuzz at ¢ = 0.

@/ Perf(X) = MF([A%/Z2], y* — x*q) = MF(A?, x*q) = D°(k[x]/x%),

and the null category at {q = 0} is Perf(C[x]/x3); we find an object with
endomorphisms k[x]/x3 (work out R-charge = |x| =1).
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Example k[x]/x"

We can resolve k[x]/x" by compactifying (A2, x"p):

€ = MF(Tot(O(~1)x — PL"), x"p).

@L "

€/ Perf(X) = MF([A2/Z,], x") = (DP(AY),..., DP(AY))

with the null category at ¢ = 0 corresponding to
kerm, = (DE(AY),..., DE(AY))

i.e. a collection of n — 1 spherical objects. (Warning: not SOD's)
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Example k[x]/x"

We can resolve k[x]/x" by compactifying (A2, x"p):

€ = MF(Tot(O(~1)x — PL"), x"p).

@L "

€| Perf(X) = MF([A%/Z,],x") = (D°(A),..., DP(AY))
with the null category at ¢ = 0 corresponding to
kerm, = (DE(AY),..., DE(AY))

i.e. a collection of n — 1 spherical objects. (Warning: not SOD's)
This is equivalent to the Auslander resolution.
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Thank you!
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