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Background Definitions Observations Matrix factorizations

DK -Conjecture (Bondal–Orlov ’02, Kawamata ’02)

Take a roof Z

X Y

f g of smooth projective varieties.

If f ∗KX = g∗KY , then Db(X ) = Db(Y ).
If f ∗KX > g∗KY , then Db(X ) = ⟨Db(Y ), . . .⟩.

=⇒ MMP passes to smaller and smaller admissible components.

Example (Crepant resolutions should be D-unique)

All crepant (KX̃ = π∗KX ) resolutions π : X̃ → X of a Gorenstein
singularity are K -equivalent =⇒ conjecturally D-equivalent.

=⇒ At the level of Db(−), MMP stops at a smooth minimal model.
(when a crepant resolution exists)
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Minimal Resolution Conjecture (Bondal–Orlov ’02)

Db(X ) has a minimal “nc-desingularization”, which embeds fully
faithfully (SOD) in all other desingularizations, and hence is unique.

If π : X̃ → X is a crepant resolution, then Db(X̃ ) is the minimal
desingularization of Db(X ).

=⇒ “Categorical” MMP always stops at a smooth minimal model.
(crepant resolution = the categorical minimal model is geometric)

Remark (“stacky crepant resolutions”)

By [BKR], crepant resolutions of certain (cDV) quotient singularities are
D-equivalent to the (smooth) orbifold quotient [X/G ].

Generalizing this, Db([X/G ]) should always be the minimal
desingularization for the coarse moduli space X/G .
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Warning: The minimal resolution conjecture is volatile

1 Need to define “nc-desingularization”.
2 It’s not clear what the correct definition should be.
3 With a naive definition, there are counter-examples.

(arguably non-geometric ones)

Remark
Even with a good definition, there is no clear proof approach; how do you
construct a functor between arbitrary desingularizations?
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Other context

Why else do we care?
Appears naturally in homological mirror symmetry (e.g. degenerations,
or proving mirror symmetry for singularities via the resolution)
Appears naturally in homological projective duality (e.g. K3
constructed from a singular cubic fourfold giving a categorical
resolution of the Kuznetsov component).
(Conjectural) unique minimal resolutions lead to (conjectural)
invariants of singularities (like dual graphs of ADE surfaces).
Like DK -conjecture, predicted equivalences between minimal
resolutions can be unexpected, hinting at deeper structure in the
constructions used to build the categories involved.
There are actual hands-on constructions, allowing us to study
concrete examples, and we find interesting structure which is poorly
understood (e.g. null categories, relative singularity categories).
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Categorical resolutions

Suppose π : X̃ → X is a resolution of singularities.

Db(X̃ )

Perf(X ) Db(X ).

π∗
π∗

If π∗π
∗ = 1 (i.e. π∗ fully faithful, π∗ ess. surjective) ⇐⇒ π∗OX̃ = OX ,

we say X has rational singularities.

Remark
Crepant resolution =⇒ rational singularities.
Terminal singularities =⇒ rational singularities.
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Categorical resolutions

Definition (Kuznetsov ’08)

A weak categorical resolution is a smooth category C with adjoint functors

C

Perf(X ) Db(X )

π∗
π∗

satisfying π∗π
∗ = 1.

It is weakly crepant if π! = π∗, where π∗ ⊣ π∗ ⊣ π!.

Remark

If X has irrational singularities, Db(X̃ ) is not a categorical resolution!

It is a weakly crepant categorical resolution iff π : X̃ → X is crepant.

The justification for this definition when X has irrational singularities is a
theorem of Kuznetsov and Lunts, which we will see in a moment.
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Categorical resolutions

Recall: X is smooth iff Perf(X ) is smooth.

Theorem (Lunts ’10)

The category Db(X ) is smooth for any separated scheme X of finite type
over a perfect field, provided a dualizing complex exists.

Corollary

C = Db(X ), π∗ = π∗ = 1 is a universal weak categorical resolution.

Example

Take X = Spec k[x ]/x2. Then Db(X ) = ⟨k[x ]/x⟩, and Ext∗X (k, k) = k[θ]
where |θ| = 1, so by Koszul duality Db(X ) = Db(k[θ]) which is smooth
like A1. This is not proper: dimk(k[θ]) = ∞.
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Categorical resolutions

Definition
A proper categorical resolution is a weak categorical resolution such that

C is “linear over Db(X )”, i.e. HomC = RΓX ◦ HomC where
HomC (−,−) ∈ Db(X ), plus naturality conditions.
The functors π∗, π∗ respect this structure.

Jargon: a module over the tensor category (Perf(X ),⊗).

Idea: HomC (−,−) ∈ Db(X ) means Homs in C are finite rank (coherent)
relative to X =⇒ proper category relative to X .

Definition (Kuznetsov ’08)

A relative Serre functor for a proper categorical resolution is an
endofunctor S : C → C with a natural isomorphism

HomC (x ,S(y)) = HomX (HomC (y , x),OX ).

The resolution is strongly crepant if idC is a relative Serre functor.
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Categorical resolutions

Remark

It follows that π! = S ◦ π∗, so strongly crepant =⇒ weakly crepant.

Example

For π : X̃ → X the relative Serre functor is −⊗ ωX̃/X [dim X̃ − dimX ],
and strong crepancy ⇐⇒ weak crepancy ⇐⇒ crepancy: ωX̃/X = OX̃ .

Theorem (Kuznetsov–Lunts ’15)

Proper categorical resolutions exist for any separated scheme of finite type
in characteristic zero.

Conjecture (Kuznetsov ’08)

Strongly crepant categorical resolutions are minimal.



Background Definitions Observations Matrix factorizations

Example: dual numbers

Take X = Spec k[x ]/x2 again. A proper categorical resolution has to be a
smooth and proper category (since k[x ]/x2 is finite over k).

Use the compactification P1
θ:ϕ, |θ| = 1 of Db(X ) = Db(k[θ]). Beilinson:

C = Db
(
• •

θ

ϕ

)
,

which contains Perf(X ) as the subcategory generated by O[0:1] = cone(θ).

Two perspectives:
Smoothing Perf(X ): finding a smooth category with an object having
endomorphisms k[x ]/x2 (skyscraper sheaf in P1).
Compactifying Db(X ): compactifying A1 to P1.
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Minimality, SOD’s and null categories

Suppose C is the minimal resolution:

C

C

Perf(X ) Db(X ),

π∗

π∗

with C = ⟨C ,A⟩.

Then A ⊆ ker π∗ =⇒ ker π∗ = ⟨K,A⟩ with A smooth
and proper: “categorical absorption of singularities” for ker π∗.

Definition

We call ker π∗ the null category (or kernel category).

Note: C is minimal iff A = 0 is the only possible absorption for ker π∗.
This is implied by the Calabi–Yau condition S |ker π∗ = [n], a weakening of
strong crepancy, when ker π∗ is connected.
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Minimality, SOD’s and null categories

Example

For the resolution P1
θ:ϕ of the dual numbers, the null category is generated

by cone(ϕ), with endomorphisms k[y ]/y2 where |y | = 2.

Nodal singularities in all dimensions have categorical resolutions with null
categories generated by a (2 or 3)-spherical object. (Cattani et. al. ’23)

Conversely, suppose we have a categorical absorption for X :
Db(X ) = ⟨X ,A⟩ with A ⊂ Perf(X ). Then A ⊂ Perf(X ) ⊂ C , giving
C = ⟨C ′,A⟩, where C ′ is a resolution for X . Conversely, any such C ′ can
be glued to A to give a resolution for Db(X ) with the same null category.

{categorical resolutions of Db(X )}
= {categorical resolutions of the absorbing subcategory X}.

Note: if X = Db(R), we get DSg(X ) = DSg(R).
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Constructions

Auslander algebras (Kuznetsov–Lunts)

If S is a non-reduced thickening of a smooth variety S0, there is a sheaf of
algebras AS/S0 on S which is a proper categorical resolution, with an SOD:

Db(AS/S0) = ⟨Db(S0), . . . ,D
b(S0)⟩.

The number of components corresponds to the order of thickening.

Example

The dual numbers k[x ]/x2 are a 2nd order thickening of a point, so we get
an SOD: Db(A) = ⟨Db(pt),Db(pt)⟩. The Auslander resolution Db(A) is
equivalent to the P1

θ:ϕ resolution.

The Kuznetsov–Lunts existence theorem is proved by gluing Auslander
resolutions of thickenings of the blowup centres appearing in a resolution
of singularities.
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Constructions

NC(C)R’s (Van den Bergh)

In nice situations (e.g. quotient singularities), when X = SpecR , there can
be a reflexive R-module M such that Λ = EndR(M) has good homological
properties.

It often gives a strongly crepant categorical resolution Db(Λ).

These “non-commutative resolutions” are a representation-theoretic
construction which can be viewed as giving special categorical resolutions
which have tilting objects.

Caveat
NCCR’s are not known to always give categorical resolutions due to a
technical obstruction, but it is expected and known in many cases.
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Matrix factorizations

Definition
A Landau–Ginzburg model is a smooth variety U with a C∗-action
(R-charge) and a global function W ∈ H0(U,OU) (the superpotential)
with is C∗-equivariant of weight 2.

Equivalently, the coordinate ring OU is
graded such that |W | = 2.

Definition

The (derived) category of matrix factorizations on a Landau–Ginzburg
model is denoted MF(U,W ), with objects given by C∗-equivariant sheaves
with C∗-equivariant endomorphisms d satisfying d2 = W · id.

Fact

Because W = 1
2dd + 1

2dd and ∂x(W ) = ∂x(d)d + d∂x(d) are
null-homotopies, the category MF(U,W ) is linear over Crit(W ) ⊂ U.
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Matrix factorizations

Facts

MF(U,W ) is linear over Crit(W ).

MF(U,W ) is smooth, since we assumed U is smooth.
MF(U,W ) is proper iff Crit(W ) is proper.
The Serre functor on MF(U,W ) is a shift of −⊗ ωU .

Example (Classical Knörrer periodicity)

E =
(
O O[−1]

x

y

)
∈ MF(A2, xy) is an exceptional object, where

R-charge is |x | = 0, |y | = 2. It is quasi-isomorphic to O/y , so

Hom(E , E) = Hom( O O[−1]
x

y
,O/y)

= (O/y [1] x−→ O/y) = O/(x , y).

This is a sheaf on Crit(xy) = {x = y = 0}, as expected.
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Matrix factorizations

Theorem (Knörrer periodicity (Orlov ’06, ...))

Suppose X ⊂ U is a hypersurface cut out by f ∈ H0(U,L). Then

Db(X ) ≃ MF(TotL∨, fp); F 7→
(

F F ⊗ L[−1]
f

p

)
,

where the fiber coordinate p ∈ H0(TotL∨,L∨) is given R-charge |p| = 2.

Remark

Here Crit(fp) = {f = p = 0} ∪ {Crit(f )} = X ∪ L∨|Sing(X ).

This is proper over X iff X is smooth.
=⇒ matches the weak categorical resolution Db(X ).

Idea (“Exoflops” Aspinwall ’14)

We find proper categorical resolutions of X by compactifying Crit(fp)
inside TotL∨, i.e. partially compactifying TotL∨.
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Remark

What does Perf(X ) correspond to? Vector bundles E map to

(
E E ⊗ L[−1]

f

p

)
= E/p,

and in fact Perf(X ) = MF{p=0}(TotL∨, fp) is the subcategory supported
at {p = 0}.

The “geometric” part of the critical locus Crit(fp).

Remark

If j : U ↪→ U is a partial compactification, then j∗ ⊣ j∗ ⊣ j∗. =⇒ this
method produces weakly crepant proper categorical resolutions.

Remark

By Knörrer periodicity f ⇝ f + x2 + y2, studying curves / surfaces also
gives results for higher-dimensional hypersurfaces.
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Example A1

Node X = {xy = 0} ⊂ A2, normalization X̃ ⊂ Bl0 A2 = TotO(−1)P1 .

X (A3, xyp)

X̃ (TotO(−1)q ⊕O(−2)p, xyp) (TotO(−1)2P1:2
q:p
, xyp) = C

KP

KP flip

{q ̸=0}

Here C = ⟨Db(X̃ ),Db(pt)⟩ matches Kuznetsov–Lunts gluing.



Background Definitions Observations Matrix factorizations

Example A1

Node X = {xy = 0} ⊂ A2, normalization X̃ ⊂ Bl0 A2 = TotO(−1)P1 .

X (A3, xyp)

X̃ (TotO(−1)q ⊕O(−2)p, xyp) (TotO(−1)2P1:2
q:p
, xyp) = C

KP

KP flip

{q ̸=0}

Here C = ⟨Db(X̃ ),Db(pt)⟩ matches Kuznetsov–Lunts gluing.



Background Definitions Observations Matrix factorizations

Example A1

Node X = {xy = 0} ⊂ A2, normalization X̃ ⊂ Bl0 A2 = TotO(−1)P1 .

X (A3, xyp)

X̃ (TotO(−1)q ⊕O(−2)p, xyp) (TotO(−1)2P1:2
q:p
, xyp) = C

KP

KP flip

{q ̸=0}

Here C = ⟨Db(X̃ ),Db(pt)⟩ matches Kuznetsov–Lunts gluing.



Background Definitions Observations Matrix factorizations

Example A1

At p = 0: Perf(X )

At q = 0: ker π∗ = Db
0 ([A1/Z2]).

Fact

Db([A1/Z2]) = ⟨O,O0⟩ = ⟨Db(A1),Db(pt)⟩
=⇒ Db

0 ([A1/Z2]) = ⟨Db
0 (A1),Db(pt)⟩ absorption!
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Example A1

So C = ⟨C ,Db(pt)⟩.

We can get C directly:

C = MF(Tot(Ox ⊕O(−1)y → P1
q:p), xyp)

{q ̸=0}−−−−→ MF(A3, xyp)

The null category at {q = 0} is Db
0 (A1) = Perf(k[θ]/θ2), via Koszul

duality (work out R-charge =⇒ |θ| = 3 =⇒ 3-spherical object).
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Remark

By localization, DSg(X ) = MF{p ̸=0}(TotL∨, fp) is the branch bit we are
seeing, separated from X , pre-compactification.

For the node this is
A1

p − {0}, i.e. C[p±1], with |p| = 2.

The choice of X with this particular DSg compactifies the p = 0 hole. The
choice of resolution C compactifies the p = ∞ hole. These are
geometrically independent!

Conjecture

Categorical resolutions of isolated hypersurface singularities should be
linear over P1 in this way. The {p ̸= 0} part is C /Perf(X ), the
{q ̸= 0} part is Db(X ), and they intersect in DSg(X ).
The data of C /Perf(X ) → DSg(X ) should then determine the
resolution via gluing with Db(X ) → DSg(X ).
In particular, if DSg(X

′) = DSg(X ) then X ′ and X should have the
same categorical resolution theory.
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Example A2

Cusp X = {y2 = x3} ⊂ A2, normalization X̃ ⊂ Bl0 A2.

We get

C = MF(TotO(−1)2P1:2 , (y2 − x3q)p) = ⟨Db(X̃ ),Db(pt)⟩.

Since Crit(y2 − x3q) = {y = x3 = x2q = 0}, we get more non-reduced
fuzz at q = 0.

C /Perf(X ) = MF([A3/Z2], y
2 − x3q) = MF(A2, x3q) = Db(k[x ]/x3),

and the null category at {q = 0} is Perf(C[x ]/x3); we find an object with
endomorphisms k[x ]/x3 (work out R-charge =⇒ |x | = 1).



Background Definitions Observations Matrix factorizations

Example A2

Cusp X = {y2 = x3} ⊂ A2, normalization X̃ ⊂ Bl0 A2. We get

C = MF(TotO(−1)2P1:2 , (y2 − x3q)p) = ⟨Db(X̃ ),Db(pt)⟩.

Since Crit(y2 − x3q) = {y = x3 = x2q = 0}, we get more non-reduced
fuzz at q = 0.

C /Perf(X ) = MF([A3/Z2], y
2 − x3q) = MF(A2, x3q) = Db(k[x ]/x3),

and the null category at {q = 0} is Perf(C[x ]/x3); we find an object with
endomorphisms k[x ]/x3 (work out R-charge =⇒ |x | = 1).



Background Definitions Observations Matrix factorizations

Example A2

Cusp X = {y2 = x3} ⊂ A2, normalization X̃ ⊂ Bl0 A2. We get

C = MF(TotO(−1)2P1:2 , (y2 − x3q)p) = ⟨Db(X̃ ),Db(pt)⟩.

Since Crit(y2 − x3q) = {y = x3 = x2q = 0}, we get more non-reduced
fuzz at q = 0.

C /Perf(X ) = MF([A3/Z2], y
2 − x3q)

= MF(A2, x3q) = Db(k[x ]/x3),

and the null category at {q = 0} is Perf(C[x ]/x3); we find an object with
endomorphisms k[x ]/x3 (work out R-charge =⇒ |x | = 1).



Background Definitions Observations Matrix factorizations

Example A2

Cusp X = {y2 = x3} ⊂ A2, normalization X̃ ⊂ Bl0 A2. We get

C = MF(TotO(−1)2P1:2 , (y2 − x3q)p) = ⟨Db(X̃ ),Db(pt)⟩.

Since Crit(y2 − x3q) = {y = x3 = x2q = 0}, we get more non-reduced
fuzz at q = 0.

C /Perf(X ) = MF([A3/Z2], y
2 − x3q) = MF(A2, x3q)

= Db(k[x ]/x3),

and the null category at {q = 0} is Perf(C[x ]/x3); we find an object with
endomorphisms k[x ]/x3 (work out R-charge =⇒ |x | = 1).



Background Definitions Observations Matrix factorizations

Example A2

Cusp X = {y2 = x3} ⊂ A2, normalization X̃ ⊂ Bl0 A2. We get

C = MF(TotO(−1)2P1:2 , (y2 − x3q)p) = ⟨Db(X̃ ),Db(pt)⟩.

Since Crit(y2 − x3q) = {y = x3 = x2q = 0}, we get more non-reduced
fuzz at q = 0.

C /Perf(X ) = MF([A3/Z2], y
2 − x3q) = MF(A2, x3q) = Db(k[x ]/x3),

and the null category at {q = 0} is Perf(C[x ]/x3); we find an object with
endomorphisms k[x ]/x3 (work out R-charge =⇒ |x | = 1).



Background Definitions Observations Matrix factorizations

Example A2

Cusp X = {y2 = x3} ⊂ A2, normalization X̃ ⊂ Bl0 A2. We get

C = MF(TotO(−1)2P1:2 , (y2 − x3q)p) = ⟨Db(X̃ ),Db(pt)⟩.

Since Crit(y2 − x3q) = {y = x3 = x2q = 0}, we get more non-reduced
fuzz at q = 0.

C /Perf(X ) = MF([A3/Z2], y
2 − x3q) = MF(A2, x3q) = Db(k[x ]/x3),

and the null category at {q = 0} is Perf(C[x ]/x3);

we find an object with
endomorphisms k[x ]/x3 (work out R-charge =⇒ |x | = 1).



Background Definitions Observations Matrix factorizations

Example A2

Cusp X = {y2 = x3} ⊂ A2, normalization X̃ ⊂ Bl0 A2. We get

C = MF(TotO(−1)2P1:2 , (y2 − x3q)p) = ⟨Db(X̃ ),Db(pt)⟩.

Since Crit(y2 − x3q) = {y = x3 = x2q = 0}, we get more non-reduced
fuzz at q = 0.

C /Perf(X ) = MF([A3/Z2], y
2 − x3q) = MF(A2, x3q) = Db(k[x ]/x3),

and the null category at {q = 0} is Perf(C[x ]/x3); we find an object with
endomorphisms k[x ]/x3 (work out R-charge =⇒ |x | = 1).



Background Definitions Observations Matrix factorizations

Example k[x ]/xn

We can resolve k[x ]/xn by compactifying (A2, xnp):

C = MF(Tot(O(−1)x → P1:n
q:p), x

np).

C /Perf(X ) = MF([A2/Zn], x
n) = ⟨Db(A1), . . . ,Db(A1)⟩

with the null category at q = 0 corresponding to

ker π∗ = ⟨Db
0 (A1), . . . ,Db

0 (A1)⟩

i.e. a collection of n − 1 spherical objects. (Warning: not SOD’s)

This is equivalent to the Auslander resolution.
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Thank you!
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