
LTCC 2023-2024: Birational Geometry

Calum Spicer

Overview

The course will assume the content of Hartshorne1. We will look at two main topics which may initially not
look hugely related to birational geometry, but in fact encompass a lot of the important ideas.

• Moduli spaces: These are schemes / algebraic spaces / stacks / e.t.c. associated to a collection of
algebraic objects (e.g. curves, surfaces, sheaves, ...).

• Foliations: These are a clever way of decomposing a space into subspaces, or analogously considering
fibres in a fibre space.

Singularities and adjunction

All schemes are considered over a field k of characteristic 0.

Example. Consider A2 ∼= Spec k[x, y, t]/(xy− t)
f−→ Spec k[t] = A1. For points p ̸= 0 in A1, the fibre f−1(p)

is a smooth curve (a conic). For p = 0 however f−1(p) = V (xy) is a nodal singular curve. What does this
say about the moduli space of curves? It says the moduli space of smooth curves is not proper / compact.
(One might ask: why care about compactness for moduli spaces?)

Exercise. Show that there does not exist an exact sequence

0→ O(a)→ Ω1
P2 → O(b)→ 0

of sheaves on P2 for any a, b ∈ Z. As a consequence, there are no smooth foliations on P2.

So from looking at the simplest cases of our main topics: the moduli space of curves, and foliations of P2,
we see that singularities naturally arise.

Theorem (Hironaka). Let X be a smooth variety over k a field of characteristic 0, and let I ⊆ OX be an
ideal sheaf. Then there exists a composition b : X ′ → X of blowups in smooth centres (i.e. along subvarieties
which are smooth) contained in the singular locus of X, such that the cosupport of b−1I = I · OX′ is a
simple normal crossings divisor.

Remark. The cosupport of an ideal sheaf is the support of the quotient; cosupp(J ) := supp(OX/J ).

Corollary (Resolution of Singularities). Let X be a normal variety over k a field of characteristic 0. Then
there exists a composition b : X ′ → X of blowups in smooth centres contained in the singular locus of X, such
that X ′ is smooth and the exceptional locus exc(b) is a simple normal crossings divisor. As a consequence,
every variety is birational to a smooth variety.

Proof. Embed X ↪→ Y with Y smooth, which is possible because X is a variety (Chow’s lemma). Let
π : Y ′ → Y be the composition of blowups obtained from Hironaka’s lemma applied to the subvariety X.
Then π−1(X) is a divisor, so at some point we must have blown up X. (Since we may assume X has
codimension at least 2 in Y .) Since we only blow up in smooth centres, at some point X must have become
smooth.

The philosophy of Grothendieck is that we should study morphisms (of schemes e.t.c.), not just the objects
(schemes e.t.c.) themselves. Hironaka’s theorem tells us that we can make any morphism X → Spec k
smooth by blowing up. What about general morphisms f : X → Z?2 The answer is no. Consider the
example from above:

A2 ∼= Spec
k[x, y, t]

(xy − t)
→ Spec k[t] = A1.

1With the caveat that he doesn’t remember what exactly is and isn’t in Hartshorne.
2We call a morphism smooth if it is flat and has regular fibres.
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This morphism has a singularity at (0, 0) in A2 from the singular fibre V (xy) over 0 ∈ A1. If we blowup the
origin the fibre over 0 ∈ A1 remains singular because of the exceptional divisor:

So the question becomes: what “nice” singularities should we allow?

Definition. Let f : (p,X) → (q, Z) be a morphism of germs of smooth varieties. (Think of the germs as
SpecOX,p, or other possibilities.) We say f is toroidal if there exist étale / analytic / formal coordinates
x1, . . . , xn and z1, . . . , zk such that f can be written as

zil = x
m1,il
1 · · ·xmn,il

n

for some collection of indices il ∈ {1, . . . , k}. In other words, if f can be written as monomials. We say a
morphism f : X → Z is toroidal if all its germs are toroidal.

Example. Smooth morphisms are toroidal, by the inverse function theorem. The map Spec k[x, y, t]/(xy−
t)→ Spec k[t] is toroidal, as it can be written in coordinates as (u, v) 7→ uv.

Remark. Toroidal means formally locally isomorphic to a morphism of toric varieties. A good short
reference for toric varieties is Fulton’s book “Introduction to Toric Varieties”.

Conjecture. Let f : X → Z be a morphism of varieties. Then there exists a diagram

X ′ X

Z ′ Z

β

f ′ f

α

such that α and β are birational maps and f ′ is toroidal.

Remark. We are not assuming that f has connected fibres here. (Recall connected fibres is equivalent
to f∗OX = OZ by Zariski’s main theorem.) This is a naive way of generalizing Hironaka’s theorem to
morphisms, taking the “nice” class of singularities to be the toroidal singularities.

Theorem (Abramovich–Karu). The above conjecture holds if f : X → Z is projective and has connected
fibres (i.e. f∗OX = OZ).

Definition. We say f : X → Z is semi-stable if f is toroidal and the scheme-theoretic fibres of f are
reduced.

Example. We cannot always achieve semi-stability by blowups; consider again the above example:

g : Bl(0,0) A2 b−→ A2 f−→ A1

(x, y) 7→ xy

2



This is a toroidal morphism, but we have

g∗(0) = b∗(V (xy))

= b∗(V (x)) + b∗(V (y))

= (b−1
∗ (V (x)) + E) + (b−1

∗ (V (y)) + E)

= b−1
∗ (V (x)) + b−1

∗ (V (y)) + 2E

where E is the exceptional divisor, so g−1(0) is not reduced (having multiplicity 2 along E).

Remark. Semi-stable morphisms “should be” universal families over moduli spaces, whatever that means.

Conjecture (Semi-Stable Reduction). Let f : X → Z be a projective morphism with connected fibres. Then
there exists a diagram

X ′ X ×Z Z ′ X

Z ′ Z

β

f ′
f

α

with α generically finite and β birational, such that

1) X ′ and Z ′ are smooth,

2) f ′ is equi-dimensional, and

3) f ′ is semi-stable.

Remark. If we don’t require f ′ to be smooth this is “weakly semi-stable reduction”.

The case dimZ = 1 is known by work of Kempf–Kunetsu–Mumford–Saint Denis. Weakly semi-stable
reduction is known in all dimensions by Abramovich–Karu. The case of relative dimension 1 is known by
work of de Jong.

Singularities and MMP

Definition. Let X be a smooth variety of dimension n. A canonical divisor KX on X is a Weil divisor
such that O(KX) ∼= ωX := Ωn

X , the sheaf of holomorphic n-forms. If X is a normal variety, with smooth
locus Xsm ⊆ X such that Z = X \Xsm has codimension at least 2 in X, then we define a canonical divisor
on X as the unique divisor KX such that KX |Xsm = KXsm .

Example. If X is a smooth variety and θ is a rational n-form, i.e. a section of ωX ⊗OX
K(X), then

KX = (θ)0 − (θ)∞;

the locus of zeros minus the locus of poles gives a canonical divisor. In particular, for Pn we get

KPn = −(n+ 1) ·H

where H is a hyperplane. (Take dx0 ∧ · · · ∧ dxn on An+1, which extends to a rational n-form on Pn with a
pole of order n+ 1 along the hyperplane at infinity.)

Toric geometry

Definition. The complex torus is (C×)n = (A1 \ {0})n. A toric variety is a normal variety X of dimension
n which contains the complex torus (C×)n as a Zariski open subset, such that the action of (C×)n on itself
extends to an action of (C×)n on X.

Example. We have An ⊇ (A1 \ {0})n = (C×)n. The torus action is given by (t1, . . . , tn) · · · (x1, . . . , xn) =
(t1x1, . . . , tnxn) which extends to all of An and even to Pn. By taking products of tori and their actions we
see that Pn × Pm is also toric.

Lemma. Let X be a toric variety. We have

KX = −
∑

D torus invariant

D,

where a divisor D is torus invariant if for all t ∈ (C×)n we have t ·D = D.
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Proof. Look at θ = dt1
t1
∧· · ·∧ dtn

tn
on (C×)n. It has poles along the torus invariant divisors, and no zeros.

Example. On An, the torus invariant divisors are the axes {xi = 0}, of which there are n. For Pn the torus
invariant divisors are also the axes {xi = 0}, of which there are n+ 1. We again see

KPn = −
n∑

i=0

H = −(n+ 1)H.

Exercise. Which quotient singularities are toric? (Recall that a quotient singularity is given by An/G =
Spec k[x1, . . . , xn]

G for G a finite group.)

Canonical divisors and discrepancies

Let X be a smooth variety, and W ⊆ X a smooth subvariety of codimension k. Consider the blowup
b : X ′ → X in W . What is the relation between KX and KX′? We have the exceptional divisor E, with

KX′ = b∗KX + aE.

Proposition. In the above setup, we have a = k − 1.

Proof. This is a local question, and everything is toroidal, and hence the setup is locally isomorphic to the
blowup of a toric variety in a torus invariant centre. (Using Artin approximation.) So we are reduced to
the case X ′ → An, where KAn = −

∑
{xi = 0}. Then

−KX′ =
∑
{xi = 0}′ + E,

where (·)′ denotes the strict transform, and

−b∗
∑
{xi = 0} =

∑
{xi = 0}′ + kE

since W is given by {x1 = · · · = xk = 0}.

Exercise. If b is a weighted blowup, what happens to a?

More generally, if b : X ′ → X is birational we have

KX′ = b∗KX +
∑

Ei exceptional

a(Ei, X)Ei,

where a(Ei, X) are called the discrepancies. Intuitively, smaller discrepancies mean worse singularities.

Remark. For a general birational morphism, we define the exceptional divisors as the components of the
complement of the maximal domain of definition. Equivalently, these are the divisors E in X ′ such that
b(E) is not a divisor in X. The non-existence of exceptional divisors does not imply that the map is an
isomorphism; there exist birational morphisms X ′ → X with dimX = dimX ′ = 3 contracting curves to
points.

Example. Consider C ⊆ P2 a smooth curve of degree d, and X ⊆ A3 the cone over C. (So X =
Spec⊕∞

n=0H
0(C,O(n)|C), or equivalently X = q−1(C) for q : A3 \ {0} → P2.) Consider b : X ′ → X

the blowup at the cone vertex, with exceptional divisor E ∼= C. The discrepancy is as follows:

a(E,X) geometry of X ′

d = 1 1 smooth
d = 2 0 (Du Val) singularity
d = 3 −1 more singular

...
...

...

Proof. The degree-genus formula gives

(d− 1)(d− 2)− 2 = 2g − 2

= KC

= KE

= (KX′ + E)|E by adjunction

= (b∗KX + (a+ 1)E)|E
= (a+ 1) · E|E ,
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where b∗KX ·E = 0 by the projection formula. Now let Y be the blowup of A3 at the origin, with exceptional
divisor F ∼= P2. Then X ′ ⊆ Y with F |X′ = E, and F |F = O(−1), so we get

E|E = (F |X′)|E
= (F |F )|X′

= O(−1)|X′∩F

= O(−1)|E = −d

since E ∼= C is a degree d curve in F ∼= P2. Hence a = 2− d.

Remark. Recall the adjunction formula: If X is a smooth surface, and C is a smooth curve in X, then
(ωX ⊗O(C))|C ∼= ωC . Equivalently KC = (KX + C)|C .

Remark. Recall the projection formula: If f : X → Y , with W ⊆ X and L a line bundle on X, then
L|f(W ) = f∗((f

∗L)|W ). Here f∗ is the sheaf pushforward, which in the case of connected fibres is the same
as the divisor / cycle pushforward. (In the example above this identifies the fiber over ωX at the origin with
the global sections of b∗ωX |E , and the former is one-dimensional so b∗ωX |E is trivial. One could also note
that b∗ωX |E is the pullback of the line bundle ωX along the map E → X, which factors through a point.)

Log discrepancies

It is often more natural to work with pairs (X,∆), for example (X ′, E) in the above examples of blowups.

Definition. A log pair (X,∆) is a normal variety X together with a Q-Weil divisor ∆ such that KX +∆
is Q-Cartier, i.e. n(KX +∆) is Cartier for some n > 0.

Given b : X ′ → X birational, we have

KX′ + b−1
∗ ∆+

∑
Ei exceptional

Ei = b∗(KX +∆) +
∑

Ei exceptional

a(Ei, X,∆)Ei,

where a(Ei, X,∆) are the log discrepancies.

Definition. A log pair (X,∆) is log canonical if for all birational maps b : X ′ → X and all excep-
tional divisors Ei we have a(Ei, X,∆) ≥ 0. It is Kawamata log terminal (KLT) if we have the same with
a(Ei, X,∆) > 0 and ∆ has Q-coefficients strictly between 0 and 1.

Remark. In this context “logarithmic” refers to working with boundaries (e.g. ∆). The philosophy is
that for D a reduced divisor, the geometry of (X,D) correpsonds to the geometry of X \D. For example
Hi(Ωj

X(logD)) = Hj,i(X \D). (If X is smooth and D is a simple normal crossings divisor then Ω1
X(logD)

is analytic locally generated by dx1/x1, . . . , dxk/xk, dxk+1, . . . , dxn where D = {x1 = · · · = xk = 0}.)

Example. Consider (X,
∑

i aiDi) where X is smooth, and
∑

i Di is a simple normal crossings divisor.

• If 0 ≤ ai ≤ 1 then this is log canonical.

• If 0 < ai < 1 then this is KLT.

Proof sketch. Assume b : X ′ → X is the blowup in W = D1 ∩ · · · ∩Dk. Then

KX′ +
∑
i

aiD
′
i + E = b∗

(
KX +

∑
i

aiDi

)
+ aE,

where a is the discrepancy. Now KX′ = b∗KX + (k − 1)E, and

b∗
(∑

i

aiDi

)
=

∑
i

aiD
′
i + (a1 + · · ·+ ak)E,

so a = k − (a1 + · · ·+ ak).

Example. If X is a toric variety with torus boundary D, then (X,D) is log canonical.
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Definition. The minimal log discrepancy of a pair (X,∆) is

mld(X,∆) = inf{a(E,X,∆)}

over all birational morphisms to X and exceptional divisors E.

Remark. The pair is log canonical iff mld(X,∆) ≥ 0.

Proposition. If mld(X,∆) < 0, then mld(X,∆) = −∞.

Proof sketch. Consider the local model (1+ε) · {x = 0} in A2 for ε > 0 under repeated blowups of the origin
in the strict transform of {x = 0}. The pullback of {x = 0} is precisely the strict transform plus the new
canonical divisor, resulting in discrepancies 1− nε where n is the multiplicity of the exceptional divisor in
the canonical divisor, which grows without bound.

Log canonical threshold

Definition. For a log pair (X,∆), the log canonical threshold of (X,∆) with respect to an effective Q-Cartier
divisor D is

lct(X,∆;D) = sup{t : (X,∆+ t ·D) is log canonical}.

Example. The pair (A2, {y2 = x3}) is not log canonical, which we can see using the following log resolution:

The singularity gives multiplicity two for E1 when pulling back the curve, giving E1 and E2 discrepancy 0
and E3 discrepancy −1. However for 5

6{y
2 = x3} the discrepancies are 2

3 and 1
2 for E1 and E2, so E3 gets

discrepancy 0 and (A2, 5
6{y

2 = x3}) is log canonical. Hence 5
6 ≤ lct(A2; {y2 = x3}) ≤ 1.

Theorem (ACC for LCT; Hacon–McKernan–Xu). The set

LCT(n) = {lct(X;D) : dim(X) = n, D an integral Weil divisor}

satisfies the ascending chain condition, i.e. if λ1 ≤ λ2 ≤ · · · is a sequence of values in LCT(n) then
λi = λi−1 for i≫ 0.

Adjunction

Proposition (The adjunction formula). Let D ⊆ X be a smooth divisor in a smooth variety. Then
ωX(D)|D ∼= ωD, i.e. (KX +D)|D ∼ KD.

Proof 1. The short exact sequence 0→ TD → TX |D → ND/X → 0 gives detTD ⊗ detND/X
∼= detTX |D, so

ω∨
D ⊗ND/X

∼= ω∨
X |D. Then note that ND/X

∼= O(D)|D.

Proof 2. Near a point in D choose coordinates x1, . . . , xn with D = {x1 = 0}. Locally, a section of ωX(D)
is of the form f dx1

x1
∧ dx2 ∧ · · · ∧ dxn where f ∈ OX . We define the Poincaré residue Res : ωX(D)|D → ωD

by

f
dx1

x1
∧ dx2 ∧ · · · ∧ dxn 7→ f |D · dx2 ∧ · · · ∧ dxn.

Note that this is in fact a well-defined map of sheaves. Locally, it is surjective since α ∈ ωD lifts to a form
dx1/x1∧α in ωX(D)|D with residue α, and injective by construction, so it is an isomorphism of sheaves.

If either of X or D is singular then this can fail.
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Example. Let Fn = P(OP1 ⊕OP1(n)), the Hirzebruch surface. We have two rational curves Σn = P(OP1)
and Σ−n = P(OP1(n)) together with the fibers F satisfying

F 2 = 0, Σ2
n = n, Σ2

−n = −n, Σn · Σ−n = 0, F · Σ±n = 1.

For n > 0, it is a fact that there exists a contraction p : Fn → X of Σ−n. Here X turns out to be the cone
over the degree n Veronese embedding of P1. Consider C = p(F ). To compute the log discrepancy, suppose

p∗(KX + C) + (a− 1)Σ−n = KFn
+ F.

By the projection formula we have Σ−n · p∗(KX + C) = 0, since p contracts Σ−n. On the other hand
Σ−n · KFn

= n − 2, since (KFn
+ Σ−n) · Σ−n = KΣ−n

= −2 by adjunction. Hence n(1 − a) = n − 1, so
a = 1/n. Now (KX + C) · C = p∗(KX + C) · F by the projection formula, and so

(KX + C) · C = (KFn
+ F + (1− 1/n)Σ−n) · F = −2 + 0 + (1− 1/n) ̸= −2 = KC .

Hence the adjunction formula fails for C in X. In particular X must be singular.

Theorem. If X is a normal variety, and D ⊂ X is a normal reduced divisor, then

(KX +D)|D = KD +Diff

where Diff is a canonically determined divisor on D, called the different, such that

1. The different is effective; Diff ≥ 0.

2. “Adjunction for singularities”: If (X,D) is log canonical in a neighbourhood of D, then (D,Diff) is
log canonical.

3. “Inversion of adjunction”: If (D,Diff) is log canonical, then (X,D) is log canonical in a neighbourhood
of D.

Sketch proof. Take a log resolution p : (X ′, D′)→ (X,D). Then

p∗(KX +D) = KX′ +D′ + Γ

where Γ is a p-exceptional divisor, and

p∗(KX +D)|D′ = (KX′ +D′ + Γ)|D′ = KD′ + Γ|D′

so we use Diff = p∗(Γ|D′).

1. Proof omitted; uses MMP.

2. If (X,D) is log canonical, let p : (X ′, D′)→ (X,D) be a log resolution. Then

KX′ +D′ +
∑

Ei = p∗(KX +D) +
∑

aiEi

gives

KD′ +
∑

Ei|D′ = p∗(KD +Diff) +
∑

aiEi|D′ ,

and
∑

Ei|D′ ≥ Diff ′, where Diff ′ is the strict transform of the different, because the different must
have been blown up. Then

KD′ +Diff ′ +
∑

Ei∩Diff′=∅

Ei|D′ = p∗(KD +Diff) +
∑

aiEi|D′ ,

so (D,Diff) is log canonical.

3. This is a corollary of the following theorem:

Theorem (Existence of log canonical modifications). Let (X,∆) be a log pair. There exists a birational
map p : (X ′,∆′)→ (X,∆), where ∆′ is the strict transform of ∆, such that

1. (X ′,∆′ + exc(p)) is log canonical.
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2. KX′ +∆′ + exc(p) is p-ample.

3. KX′ + ∆′ + exc(p) = p∗(KX + ∆) + F where −F ≥ 0, and if F ̸= 0 then every component of ∆′

appears with a negative coefficient.

Remark. The notion “p-ample” in 2 means that there is a divisor G on X such that KX′+∆′+exc(p)+p∗G
is ample. Note that 3 is a direct consequence of 2, and implies that the log discrepancies are zero if (X,∆)
is log canonical.

Proof. The proof is via the MMP, see [BCHM].

Proof of inversion of adjunction. Consider the case Diff = 0. If (X,D) is not log canonical, take a log
canonical modification π : (X ′, D′)→ (X,D), so

KX′ +D′ + exc(π) = π∗(KX +D) + F

with −F ≥ 0. Since (X,D) is not log canonical we must have F ̸= 0, so

KD′ + exc(π)|D′ = π∗(KD′) + F |D′

where F |D′ ̸= 0 because every component of D′ appears in F with a negative coefficient. Hence D′ is not
log canonical.

Corollary. Suppose (X,∆) → T is a fibration, where dimT = 1. If (Xt,∆t) is log canonical, then (X,∆)
is log canonical in a neighbourhood of t.

Remark. Here a fibration means that X → T is a fibration (i.e. flat with connected fibres), and for all
components D of Supp∆ the restriction D → T is also a fibration.

Remark. Hence log canonicity is an open condition on the base.

It is a fact that KLT surface singularities are precisely the quotient singularities. This is false in higher
dimensions. There is even a classification of log canonical singularities on surfaces, but in higher dimensions
the topology can be arbitrarily complicated.

Exercise. If X is a Calabi-Yau projective variety, show that the cone on X is log canonical.

Moduli of curves

The basic setup in moduli theory is a moduli functor:

F : Schk=k → Set,

where
F (k) = {objects we want to parametrize},

e.g. curves. We need to decide what F (T ) is for general T .
The dream outcome is then

(I) F ∼=Φ Hom(−,M) for someM, so k-points ofM are the objects we want to classify.

(II) There is a universal family U →M (the distinguished element of F (M)) s.t. s ∈ F (T ), Φ(s) : T →M
corresponds to a pullback family U ×M T → T .

For example, for curves U →M should have fiber over a point ofM given by the corresponding curve. To
ensure such an M exists we need to know what a “good” curve is (we can’t hope to classify all curves),
and also what a “good” family of curves is, to define F (T ). Since a family of curves is a morphism of
relative dimension one, we think of the moduli of curves as being really the moduli of morphisms of relative
dimension one.
What “goodness” do we need?

1) A positivity constraint (e.g. something being ample). For curves: g ≥ 2; ωC ample.

2) A singularity constraint. (We wantM to be separated and proper.)

So we care about singularities of morphisms.
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Definition. A morphism f : X → T where T is a curve is locally stable if it is flat, and (X, f−1(t)) is (semi)
log-canonical for all t ∈ T .

By adjunction, this is equivalent to the fibres being (semi) log-canonical. (If dim(X/T ) = 1 this is equivalent
to the fibres being nodal curves.)

Definition. A morphism f : X → T is stable if it is locally stable and KX is f -ample (i.e. KX + f∗D is
ample for some D).

Semi-stable implies stable, but the converse may fail: f : A3 → A1, (x, y, z) 7→ x3 + y3 + z3 is locally stable
but not semi-stable.

Example. Fix C of genus at least 2. Consider C×A1 → A1, and blowup a single point on C×{0}. Write E
for the exceptional divisor, which is a copy of P1, and C ′ for the strict transform of C. We have (C ′)2 = −1,
since 0 = C2 so (C ′+E)2 = 0, and by Grauert / Artin we can contract C ′ to a point. The result has a very
bad singularity from C ′, and is no longer locally stable.

If we allowed this family in our moduli functor, then the point corresponding to P1 would be in the closure
of the point corresponding to C. This would be true for all such C, so M would be badly non-separated.
Hence we need the local stability condition forM to be separated.
Without the positivity condition, we can do a similar thing repeatedly blowing up points on C × A1 to get
infinitely many distinct curves in the closure of the point corresponding to C, which would preventM from
being finite type.

Theorem. Stable curves with fixed geometric genus form a good moduli spaceMg.

(Due to recent work this is true for higher dimensional varieties if you replace genus with volume.)

Theorem. The moduli space of stable curves is separated and proper.

Proof. For properness, use the valuative criterion:

X0 X

C0 C.

stable family

We want to complete a stable family over C0 = C \ {p} to a stable family over C.

• Step 1: Complete X0 to some family Y → C (e.g. embed in projective space over C and take closure).

• Step 2: Take a semi-stable reduction of Y → C.

Y ′ Y ×C C ′ Y

C ′ C.

bir.

g

semi-stable
finite

(Finite base-change is allowed, stack not a scheme.) Then Y ′ → C ′ is locally stable, but KY ′ may not
be ample over C ′.

• Step 3: We want to restore ampleness by contracting all curves E in Y ′ s.t. g(E) is a point and
KY ′ · E ≤ 0. This can be fixed by the MMP.

For separatedness (uniqueness of lifts) we use uniqueness from MMP.

If C is a stable curve, then ω⊗3
C is very ample, and as an exercise one can check that h0(ω⊗3

C ) = 5g − 5.
Choosing a basis {σi} for H0(ω⊗3

C ) gives an embedding C ↪→ P5g−6, so every stable curve embeds with
degree 6g − 6 in P5g−6. Hence there is a component of the Hilbert scheme H of P5g−6 containing all these
curves.

Problem 1. H has points not corresponding to stable curves.
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Problem 2. This presentation depends on the choice of basis, so each stable curves appears many times
in H. (The stabilizer is PGL(5g − 5).)

So we want a suitable open locus within a suitable quotient H/PGL(5g−5). Mumford developed “geometric
invariant theory” (GIT), which defines a subset Hs ⊆ H of “GIT stable” points, and a Deligne-Mumford
stack Hs � PGL(5g − 5) which is a suitable quotient of H by PGL(5g − 5). As a miracle, the set of GIT
stable points Hs is precisely the set of points corresponding to stable curves. In higher dimensions this
doesn’t hold.

Misc

Big and pseff divisors

Recall in the previous section we had a locally stable fibration in curves X → C, and we needed to contract
all the curves Σ with KX · Σ ≤ 0. The following definition is in some sense a weakening of the notion of
ample divisors:

Definition. A divisor D is big if mD ∼ A+ E for some m ≥ 0, where A is ample and E is effective.

Remark. A big divisor is not necessarily numerically effective, e.g. if C is a curve in a surface with C2 < 0,
then (A+ nC) · C < 0 for n≫ 0.

Suppose p : X → X ′ is a non-trivial birational morphism. If A is ample, then p∗A is not ample, since
p∗A·E = 0 for each exceptional curve E. (Recall the Nakai–Moishezon criterion: A is ample iff AdimV ·V > 0
for all subvarieties V , assuming A is Cartier and the variety is proper. This is equivalent to requiring that
A|V is big for all V .) However, we do get that D big implies p∗D big. In parallel with bigness weakening
the notion of ampleness, we have a weakening of the notion of effectiveness:

Definition. A divisor D is pseudo-effective, or pseff, if D ·A1 · · · · ·AdimX−1 ≥ 0 whenever A1, . . . , AdimX−1

are ample.

Remark. A divisor on a curve is pseff iff its degree is non-negative.

Remark. Effective divisors are pseudo-effective, but the converse fails: if p, q are general points on an
elliptic curve, then p− q is pseudo-effective but not effective.

Contracting curves

Suppose X is a smooth surface, with KX pseff, but KX · C < 0 for some curve C.

Claim. C2 < 0.

Proof. Let A be ample. Then A+mKX is big for m≫ 0. (This is not obvious, but big divisor plus a pseff
divisor is big.) Hence A +mKX ∼Q A′ + E′ for m ≫ 0, where A′ is Q-ample and E′ is Q-effective, which
gives

E′ · C < (A′ + E′) · C = (A+mKX) · C < 0.

This is only possible if C is in the support of E′ with C2 < 0.

Note that from adjunction we have KC + Diff = (KX + C) · C < 0, so KC is negative meaning C must
be P1, with KC = −2. (A priori C is singular, but since P1 is smooth we see that Diff = 0 and classical
adjunction holds.)
Note that if b : S′ → S is the blowup of a surface at a smooth point with exceptional divisor C, then

C2 = KS′ · C = −1.

Theorem (Castelnuovo’s criterion). Suppose X is a surface, with a curve C such that C2 = KX ·C = −1.
Then there exists a blowup b : X → Y at a smooth point of Y with exceptional divisor C.

Proof. Let X̂ be the formal completion of X along C, i.e. the ringed space (P1, lim←−n
OX/OC(−nC)). If Xn

is the nth infinitesimal neighbourhood, we have a SES

0→ OC(−nC)→ OXn → OXn−1 → 0,
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and OC(−nC) = OP1(n) since C = P1 as argued above. Now H1(P1,O(n)) = 0 for n ≥ 0, so the SES splits,
and hence

Γ(X̂,OX̂) = Γ(P1,
∏
n≥0

OP1(n)) = C[[x, y]].

So we get X̂ → Â2 = Spf C[[x, y]]. In fact X̂ → Â2 is the completion of the blowup of A2 at a point. By
Artin approximation this extends to a morphism X → Y where Y is smooth. We can push an ample line
bundle on X forward to see that Y is projective.

Remark. Every smooth 2-dimensional algebraic space is projective, which follows from MMP.

MMP for surfaces

Suppose X is a smooth surface, and KX is pseff. The MMP runs as follows: if there is a curve C with
KX · C < 0, then by Castelnuovo’s criterion we can contract it. Otherwise we stop, and X is the minimal
model. (KX may not be ample.)
Since dimH2(X,R) drops with each contraction, the algorithm terminates. (Note that [C] is non-zero in
H2(X,R) since C ·KX ̸= 0.)

Remark. If KX is not pseff we can do the same thing, instead terminating in a Mori fiber space (for
surfaces this is P2 or a P1-bundle.) The challenge is finding which curves are (−1)-curves.

We write X → Xmin for the minimal model.

Remark. If KX is pseff, then KXmin is nef (KXmin · C ≥ 0 for all C.) If KX is not pseff then running the
algorithm always results in a Mori fiber space.

Definition. A Mori fiber space is a space X with a morphism f : X → Y such that f∗OX = OY ,
dimX > dimY , ρ(X)− ρ(Y ) = 1 and −KX is f -ample.

Theorem. If f : X → Y is a projective morphism, and A is ample on Y , then f∗A is nef.

Remark. KXmin is not necessarily ample.

Theorem. If X is a smooth surface, KX nef implies KX is semi-ample, i.e. there is a morphism f : X → Y
with KX ∼Q f∗A for some ample A.

If Y is a point then KX ∼ Q0, and if Y is a curve then X → Y is an elliptic fibration. If Y is a surface we
call Y the canonical model Xcan.

Remark. If KX is pseff but not big, we get dimY ≤ 1. If KX is big we get a canonical model.

The point of canonical models is that KXcan
is ample. We can then apply this for showing that the moduli

space of curves is proper. Recall we had a family X0 → C0 = C \ {0} to extend over C.

1. Complete to get X → C.

2. Apply semi-stable reduction to get X ′ → C.

3. Go to a canonical model X ′ → X → C.

Then X → C is the family we want.

Remark. Xcan is usually singular, but has mild (canonical) singularities, e.g. Du Val singularities.

Remark. For surfaces, the singularities of Xcan are analytically locally of the form C2/G with G ≤ SL2(C).
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