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0 Introduction
Foliations have had famous applications in the realm of real differential geometry, due to the work of
Thurston and his geometrization conjecture. However, holomorphic foliations in complex geometry have
also been a fruitful area of study. Here we will specifically look at the applications of foliations to the study
of complex algebraic surfaces, and their birational geometry. In analogy with the Enriques classification
of surfaces and the Minimal Model Program, foliations of surfaces also have a rich classification theory
[Br]. This report is an introduction to the basic concepts of the theory of foliations on algebraic surfaces,
referencing important results but with many omissions, including almost all of the classification theory.
We have attempted to motivate the concepts with lots of basic examples, and judicious use of pictures.

The structure of the report is as follows. We begin with an introduction to the basic concepts of foliations
in Section 1, and the local analysis of singularities, mentioning the Camacho–Sad separatrix theorem,
and the behaviour of foliations under blowup including Seidenberg’s theorem. Section 2 covers index
theorems giving some of the intersection theory of the canonical bundle of a foliation, which we then apply
in Section 3 to some examples of foliations arising from fibrations. Finally, in Section 4 we make some
remarks about the work of Bogomolov and McQuillan towards the Green–Griffiths conjecture, before
going on a tenuously related tangent about slope stability and the Donaldson–Uhlenbeck–Yau theorem.

1 Foliations and blowups
In this section we cover the basic definitions of foliations, and introduce some of their local and global
invariants, before looking at their behaviour under blowups. Everything will be considered over C.

1.1 Foliations
Suppose X is a normal surface. To give a foliation F of X, we want to define the tangent direction of
the leaves of the foliation at any point in X, giving a tangent vector up to scale at every point. We can
accomplish this by taking vector fields vi ∈ H0(Ui, TX) for an open cover X = ∪iUi, such that vj = fijvi
for some non-vanishing holomorphic function fij ∈ H0(Ui ∩ Uj ,O×

X). Identifying data which would give
rise to the same foliation, we see that F is uniquely determined by the class {fij} in Čech cohomology
H1(X,O×

X), defining a line bundle TF , and the global section {vi} of T∨
F ⊗ TX up to multiplication by a

nowhere vanishing holomorphic function.

Example 1. Consider foliating A2 with horizontal leaves. The tangent direction for the leaves is generated
by ∂

∂x , so TF is trivial (as it must be on A2) with the section of T∨
F ⊗ TA2 = TA2 given by ∂

∂x . Replacing
∂
∂x by − ∂

∂x or 2 ∂
∂x defines the same foliation.

Figure 1: Foliation of A2 generated by ∂
∂x .

We can also characterize the tangent spaces to the leaves as kernels of 1-forms, leading to a similar
definition with TX replaced by Ω1

X . The foliation is given by a line bundle N∨
F and a global section {ωi}

of NF ⊗ Ω1
X up to multiplication by a nowhere vanishing holomorphic function.

Example 2. The tangent vector ∂
∂x on A2 is annhilated by the 1-form dy, and so the foliation from the

previous example can also be seen as given by the trivial bundle NF and the section dy of NF ⊗Ω1
A2 . We

could construct dy here by contracting ∂
∂x with the area form dx∧ dy, and so more generally the foliation

generated by the vector field A ∂
∂x +B ∂

∂y could also be specified by the contracted 1-form Bdy −Adx.

For a smooth foliation the tangent bundle TF should be locally free, so we would require that the vector
fields {vi} (or the 1-forms {ωi}) be non-vanishing. This is quite restrictive, and so in practice we will
be interested in foliations with singularities. We can also view the above definitions as giving rational
sections of TX or Ω1

X , defining a global section after twisting by O(D) for D a suitable divisor of poles.
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There is a unique choice of D such that the resulting section vanishes only in codimension 2, and so we
restrict our attention to foliations with singularities in codimension 2.

Example 3. Consider the extension of the foliation generated by ∂
∂x on A2 to P2. In coordinates [1 : y : z]

the 1-form dy on A2 becomes d(y/z) = dy/z − ydz/z2, with a pole of order 2 along the hyperplane at
infinity. Hence we get a section (zdy − ydz)/z2 of Ω1

P1(2) which vanishes at [1 : 0 : 0] ∈ P2, defining a
foliation F with NF = O(2) and a singularity at [1 : 0 : 0]. Note that the local form of the singularity is
generated by the radial vector field y ∂

∂y + z ∂
∂z annhilated by zdy − ydz, illustrated in Fig. 2.

H

x = c

Figure 2: Parallel leaves converging at the horizon.

The perspective of a foliation as the subsheaf TF in TX leads us to a general definition of foliations for
higher dimensions.

Definition 1.1. A rank r foliation F of a normal variety X is a rank r subsheaf TF of TX such that

i. TX/TF is torsion-free,

ii. TF is closed under the Lie bracket on TX .

The singular locus Sing(F ) is the singular locus of X together with the locus where the fiber of TF → TX

drops in rank.

Remark. Note that ii. is automatically satisfied for rank 1 foliations, as the Lie bracket then vanishes on
TF . This condition is the requirement for integrability, leading to Theorem 1.5.

See [Fr, §2] for properties of torsion-free sheaves and singularities of coherent sheaves. It follows that
TX/TF is a subsheaf of a locally free sheaf of the same rank, so in the case of a rank 1 foliation on a
surface we get TX/TF = I ·NF where NF is a line bundle and I is the ideal sheaf cutting out Sing(F ).
We then have two dual exact sequences

0 → TF → TX → I ·NF → 0 (1)

and
0 → N∨

F → Ω1
X → I · T∨

F → 0. (2)

Of course, the 1-forms vanishing on TF are dual to TX/TF , justifying the re-use of the name NF from
above. The inclusion N∨

F → Ω1
X is given by the section of NF ⊗ Ω1

X defining the foliation.

Remark. Since a foliation is specified by an (almost) non-vanishing vector field up to scale, we can view it
as an (almost) section of the projective tangent bundle P(TX) → X, i.e. a rational section with domain
of definition the complement of Sing(F ). Similarly, the 1-form perspective gives a rational section of the
projective cotangent bundle P(Ω1

X) → X. The fact that these are equivalent can be seen from the fact
that Ω1

X = TX ⊗KX , giving an isomorphism P(Ω1
X) = P(TX). See [M98, II] for more context. This will

come up in Section 4.

We now restrict our attention to the case of a rank 1 foliation F on a surface X.

Proposition 1.2. KX = T∨
F ⊗N∨

F .

Proof. Non-vanishing sections of KX give by contraction an isomorphism between vector fields and
1-forms, identifying TF and N∨

F . In this way we get an isomorphism KX = Hom(TF , N∨
F ) = T∨

F ⊗N∨
F .

This can also be seen from the exact sequence Eq. (2), which restricts to an exact sequence of vector
bundles on U = X \ Sing(F ), giving KX |U = (N∨

F ⊗ T∨
F )|U by taking determinants, which implies the

result because Sing(F ) has codimension at least 2.
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Example 4. In the example of ∂
∂x extended to P2 we had NF = O(2). Since KP2 = O(−3), the proposition

gives TF = O(1), so ∂
∂x should extend to a section of TP2(−1). Indeed in coordinates [1 : y : z] the

pushforward of ∂
∂x is −z(y ∂

∂y + z ∂
∂z ), vanishing to first order at infinity.

Definition 1.3. The canonical bundle of the foliation F is KF := KX ⊗NF = T∨
F .

Example 5. In the previous example TF = O(1), so KF = O(−1).

1.2 Invariant curves
To relate a foliation defined by a vector field or 1-form to the intuitive notion of leaves foliating a surface,
we have to consider its integral curves, which give the leaves of the foliation. In general, the solutions to
the relevant differential equation will be analytic but not algebraic.

Definition 1.4. If (X,F ) is a foliated surface, a holomorphic curve C in X is invariant under F if the
map TC → TX factors through TF .

Example 6. Consider the foliation of A2 generated by xdy+
√
2ydx, corresponding to x ∂

∂x −
√
2y ∂

∂y . The
differential equations defining an invariant curve are

ẋ(t) = x(t), ẏ(y) = −
√
2y(t).

There are two algebraic curves {x = 0} and {y = 0} which are invariant, and away from them the
equations can be integrated to an analytic parametrization x(t) = x0e

t, y(t) = y0e
−
√
2t defining local

analytic curves xy1/
√
2 = x0y

1/
√
2

0 which are not algebraic. (Note that if we replace
√
2 with a rational

number, e.g. 2, then a multiple of the resulting 1-form has an algebraic integral; x(xdy + 2ydx) = d(x2y),
and the leaves are algebraic; x2y = x2

0y0.)

Figure 3: Leaves of xdy +
√
2ydx.

In fact, we have the following theorem (cf. [Voi, Thm 2.20]).

Theorem 1.5 (Frobenius). If X is a smooth complex analytic variety, and F is a foliation on X, then
for any x ∈ X \ Sing(F ) there is an analytic neighbourhood U of x and a holomorphic submersion
F : U → W ⊂ Cr such that TF |U = ker(dF ).

Hence near smooth points we always have locally defined analytic leaves, given as the fibers of a
holomorphic submersion. A key result for the local structure at singular points is the “separatrix theorem”.

Definition 1.6. A separatrix at p ∈ Sing(F ) is a local holomorphic curve C passing through p and
invariant under F .

Theorem 1.7 (Camacho–Sad, [CS82]). If X is a smooth surface, with foliation F , then through every
p ∈ Sing(F ) there exists at least one separatrix.

In fact there are generalizations of this result to the case of singular X; see [Cam88].

Example 7. In Example 6 we found two separatrices: {x = 0} and {y = 0}.

Remark. As a consequence of Theorem 1.5, if two invariant curves intersect (or if an invariant curve has
a node), then the intersection point is a singularity of the foliation.
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It is worth noting that while the leaves of the foliation can always be locally defined by an analytic
equation, the global geometry can be quite pathalogical. Take the foliation from Example 6. It is hard to
visualize the global geometry of the leaves for dimension reasons, but we can intersect with the torus
S1 × S1 ⊂ C2. The slices in S1 × S1 of the leaves of F are parametrized as x(t) = eit, y(t) = eϕ−i

√
2t for

t ∈ R, where ϕ ∈ R is fixed for each leaf. We recover the classical example of a pathalogical immersion
of R in the torus; each leaf is not just Zariski dense, but classically dense. This highlights one of the
dangers of relying on pictures like Fig. 3 depicting only the real locus.

Figure 4: A slice of a single leaf of xdy +
√
2ydx.

1.3 Singularities
In view of Theorem 1.5 the local picture of F at smooth points is relatively simple, so we will be interested
in the local theory of the singular points. We will look at some invariants of the singularities of F which
can be used to identify classes of “nice” singularities out of all the possible modifications (under e.g.
blowups) of a singularity, and can be accumulated to provide some global information about F . We will
only consider the case where the underlying surface is smooth.

1.3.1 Multiplicity

Fix a foliation F on a smooth surface X, with a singular point p ∈ Sing(F ). Taking local analytic
coordinates x, y near p = (0, 0), we have a generator A ∂

∂x +B ∂
∂y for F .

Definition 1.8. The multiplicity of the singularity p is

m(F , p) := dimC ÔX,p/(A,B).

We may then define a count of the total number of singularities of F :

m(F ) :=
∑

p∈Sing(F)

m(F , p),

which is a finite sum provided that X is compact.

Remark. One could also view m(F , p) as the multiplicity at p of the 0-dimensional subscheme Sing(F ) ⊂ X
cut out by the ideal sheaf in Eq. (1).

Example 8. For the foliation given by xdy+ ydx a generating vector field is x ∂
∂x − y ∂

∂y , so the multiplicity
at the origin is

dimC C[x, y]/(x, y) = 1.

If we instead consider the foliation generated by x ∂
∂x + y2 ∂

∂y , then the multiplicity at the origin is

dimC C[x, y]/(x, y2) = 2.

Note that perturbing this to the foliation x ∂
∂x + (y2 + ε) ∂

∂y results in two singularities (0,±
√
ε) both with

multiplicity 1.
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Figure 5: The foliation generated by x ∂
∂x + y2 ∂

∂y .

Proposition 1.9. Suppose (X,F ) is a compact foliated surface. Then

m(F ) = TF · TF + TF ·KX + c2(X) = c2(X)− TF ·NF .

Proof. Note that the second equality is immediate from KF = −TF = KX +NF , Proposition 1.2. For
the first equality, note that c2(T

∨
F ⊗ TX) is given by the vanishing locus of the section in H0(T∨

F ⊗ TX)
corresponding to the inclusion TF → TX , which has isolated zeros at the singularities of F . The
intersection multiplicity with the zero section at p ∈ Sing(F ) is precisely m(F , p), and so

m(F ) = c2(T
∨
F ⊗ TX).

Now recall that
c2(T

∨
F ⊗ TX) = c2(TX) + c1(TX)c1(T

∨
F ) + c1(T

∨
F )2,

which can be seen from the splitting principle:

c2(L⊗ (L1 ⊕ L2)) = (c1(L) + c1(L1))(c1(L) + c1(L2))

= c1(L1)c1(L2) + (c1(L1) + c1(L2))c1(L) + c1(L)
2

= c2(L1 ⊕ L2) + c1(L1 ⊕ L2)c1(L) + c1(L)
2.

The result then follows from c1(TX) = −c1(KX), c1(T∨
F ) = −c1(TF ).

Example 9. Recall that the Chern character of Pn is (1+h)n+1 for h a hyperplane class, so the Euler class
is (n+1)hn. Hence c2(P2) = 3, so for a foliation of P2 we must have m(F ) = 3+ TF · TF + TF ·KP2 . In
Example 4 we found TF = O(1), so

m(F ) = 3 +H ·H +H · (−3H) = 3 + 1− 3 = 1.

Indeed, there was one singularity with the local form y ∂
∂y + z ∂

∂z , which has multiplicity 1. In fact
the integer TF · TF + TF ·KX must always be even, from computations with Stiefel–Whitney classes
w = Sq(ν) and their relation to the Wu and Chern classes (see [Mil], §8 and §14):

L ·KX = −c1(X)c1(L) ≡ w2(X)w2(L) reducing mod 2

≡ (ν2(X)− w1(X)2)w2(L) from w = Sq(ν)

≡ ν2(X)w2(L) odd wk vanish

≡ w2(L)
2 from Sqk(αk) = α2

k

≡ c1(L)
2 mod 2

for any line bundle L. Hence a foliation of P2 must have an odd number of singularities, and in particular
at least one.

Remark. It can be shown directly that there is no exact sequence of the form 0 → O(a) → Ω1
P2 → O(b) → 0

on P2, so that there can be no smooth foliation, but this doesn’t obviously generalize to a parity constraint.
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1.3.2 Holonomy

Now we consider the case of a separatrix C through p ∈ Sing(F ). A punctured neighbourhood of p in C
is isomorphic to the punctured disc D∗ ⊂ C, and has fundamental group generated by a loop γ. We may
locally project the coordinates on X to C, and given a lift of the base of γ we obtain a unique path lifting
γ in a neighbouring leaf of F . This lifted path may no longer be a loop, and so taking the endpoint gives
an endomorphism of the fiber of this projection over the basepoint. Writing D for this fiber, we have a
homomorphism from π1(C \ {p}) ≃ Z to (locally defined) biholomorphisms of D relative to p.

Figure 6: Holonomy of a foliation.

Definition 1.10. The holonomy of the separatrix C is the (locally defined) biholomorphism of a disc
neighbourhood of p in D coming from a generator of π1(C \ {p}) with positive orientation, which is
defined up to conjugacy. In practice we will only concern ourselves with the derivative of this (locally
defined) biholomorphism at p, which is then a well-defined element of C∗.

To make things more concrete, suppose again that we have a local generator A ∂
∂x + B ∂

∂y for F near
p = (0, 0), such that C = {y = 0}. Take γ to be the loop t 7→ (e2πit, 0) generating π1(C \ {p}). We have
the projection (x, y) 7→ (x, 0) ∈ C, and for each ε ∈ C we lift γ to a path tangent to F starting at (1, ε)
which has an endpoint (1, h(ε)). The holonomy is the map h(ε).

Example 10. Consider the foliation generated by x ∂
∂x +λy ∂

∂y . The leaves are locally fibers of the function
xy−λ, so lifting (e2πit, 0) to a path in the leaf through (1, ε) we obtain (e2πit, εe2πiλt), with endpoint
(1, εe2πiλ). Hence we get h(ε) = εe2πiλ, so the holonomy of the separatrix {y = 0} is already linear with
derivative e2πiλ. Note that when λ = −

√
2 as in Example 6 this shows that the holonomy is an irrational

rotation of infinite order, giving some evidence of the leaves not closing up nicely near the singularity.

Example 11. Consider the radial foliation generated by x ∂
∂x + y ∂

∂y . The leaf through (1, ε) is the line it
spans through the origin, and so lifting the loop (e2πit, 0) to this leaf gives (e2πit, εe2πit), which is again a
loop. Hence the holonomy is trivial in this example.

The holonomy of a separatrix actually determines the local properties of F at the singularity in p for
certain classes of reduced singularities, due to results in [MM80], [MR82].

1.3.3 Eigenvalues

Near a singularity, as in the study of dynamical systems, we can consider the linearization of the generating
vector field, replacing

A(x, y)
∂

∂x
+B(x, y)

∂

∂y

with (
∂A

∂x

∣∣∣∣
(0,0)

· x+
∂A

∂y

∣∣∣∣
(0,0)

· y
)

∂

∂x
+

(
∂B

∂x

∣∣∣∣
(0,0)

· x+
∂B

∂y

∣∣∣∣
(0,0)

· y
)

∂

∂y
.
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The resulting linear system is integrable, with integral curves given by t 7→ eJtv0 for J the Jacobian matrix
of coefficients, so the salient properties of the linearized dynamics are determined by the eigenvalues
λ1, λ2 of the matrix J , which is determined (up to conjugation) by the choice of generating vector field.

Definition 1.11. If λ1 and λ2 are not both zero, we say that λ1/λ2 if λ2 ̸= 0, or λ2/λ1 if λ1 ̸= 0, is the
eigenvalue of F at the singularity p, a complex number defined up to inversion. If the eigenvalue λ is not
a positive rational number, we say that the singularity is reduced. If λ ̸= 0 we say the reduced singularity
is non-degenerate, otherwise it is a saddle-node.

Remark. Multiplication by a non-vanishing holomorphic function scales λ1 and λ2 proportionally, so that
the eigenvalue is well-defined up to inversion in terms of F and p. The concept of a reduced singularity
of a foliation is well-defined since the positive rational numbers are closed under inversion.

Example 12. The radial foliation generated by x ∂
∂x + y ∂

∂y (Fig. 2) has λ = λ1 = λ2 = 1, and so the
origin is not a reduced singularity. On the other hand, the foliation generated by x ∂

∂x −
√
2y ∂

∂y (Fig. 3)
is reduced, with eigenvalue −

√
2. The singularity with positive multiplicity given by x ∂

∂x + y2 ∂
∂y (Fig. 5)

is an example of a saddle-node.

In fact, reduced singularities have a classification with normal forms, depending on the values of λ (see
[Br, §1]). A key property of this classification is that the separatrices at a reduced singularity form a local
complete intersection, having at most 2 components. Compare this with the non-reduced radial foliation
of Example 3, which has infinitely many separatrices. The significance of this class of singularities is that
we can “reduce” to them after some sequence of blowups, Theorem 1.14, and moreover the blowup of a
reduced singularity remains reduced.

1.4 Blowups
Example 13. Consider the foliation of P2 from Example 3. In coordinates [1 : x : y] we have a singularity of
the form xdy− ydx with many separatrices, which we would like to blow up. Over this region, the blowup
X is covered by charts U, V ≃ A2 where U = {(x, tx, 1 : t) ∈ A2 × P1}, V = {(sy, y, s : 1) ∈ A2 × P1}.
The pullbacks to U and V of ω = zdy − ydz are

ω|U = xd(tx)− txdx = x2dt, ω|V = sydy − yd(sy) = −y2ds.

These vanish to second order along the exceptional divisor E, but factoring this out we get 1-forms dt
and −ds on U and V which patch together to give a nowhere vanishing 1-form with values in the line
bundle O(−2E). Pictorially this is exactly as expected.

E

Figure 7: Blowing up xdy − ydx.

Example 14. If we instead have the singularity ω = xdy + ydx, then

ω|U = x2dt+ 2xtdx, ω|V = y2ds+ 2ysdy.

This has only first order vanishing along E, giving a 1-form valued in O(−E), but with two singularities
from the local forms xdt+2tdx, yds+2sdy. The exceptional divisor takes the role of the other separatrix
downstairs in lifting the singularity.

7



E

Figure 8: Blowing up xdy + ydx.

Example 15. Finally, consider blowing up a smooth foliation; ω = dx. Then

ω|U = dx, ω|V = sdy + yds,

so we have introduced a singularity on the exceptional divisor, which crosses the strict transform of the
unique separatrix downstairs. Note that the pullback doesn’t vanish along E.

E

Figure 9: Blowing up a smooth foliation.

Definition 1.12. Summarizing what we have seen in these examples, if (X,F ) is a foliated surface
and p ∈ X, then under the blowup π : X̃ = Blp X → X we have a rational section of π∗NF ⊗ Ω1

X̃
with a zero of some order a ≥ 0 along the exceptional divisor E. This then gives a regular section of
π∗NF (−aE)⊗Ω1

X̃
, defining a foliation F̃ on X̃ with NF̃ = π∗NF (−aE). We will refer to the vanishing

order a as a(F , p).

Remark. By a similar argument, we can pullback the foliation F along any rational map due to the
characterization of foliations in terms of rational sections of Ω1

X , but in this generality we have less control
over how the normal bundle changes.

In Example 15 we computed a(F , p) = 0 for p /∈ Sing(F ), and in the other examples we found a(F , p) = 1
for the reduced singularity xdy + ydx and a(F , p) = 2 for the non-reduced radial singularity. It is a fact
that for reduced singularities a(F , p) ∈ {0, 1}, which can be shown from the normal forms. Recall that
KX̃ = KX + E, so

KF̃ = KX̃ +NF̃ = π∗KF + (1− a)E.

Hence for reduced singularities we get KF̃ ≥ π∗KF .

We now make a remark about the holonomy of the foliation F̃ . For each separatrix C through p, the
strict transform C̃ ⊂ X̃ is an invariant curve of F̃ that meets the exceptional divisor E at a point q,
which may or may not be a singularity of F̃ .

Proposition 1.13. The holonomy of F̃ along C̃ through q is the same as that of F along C through p.

Proof. Indeed, the loop γ, curve D, and portions of leaves along which γ is lifted in the definition of the
holonomy are all disjoint from p, and so lift isomorphically to the same constructions in X̃.

Example 16. In Example 11 we saw that the radial fibration has trivial holonomy, which can be seen in
light of this proposition from the fact that blowing it up gives a smooth foliation (Example 13).

We conclude the section by citing Seidenberg’s theorem on reduced singularities.

Theorem 1.14 (Seidenberg, [Sei68]). If (X,F ) is a foliated surface, and p ∈ Sing(F ), then there is
a sequence of blowups π : X̃ → X of centres over p such that the induced foliation F̃ has only reduced
singularities on the fiber over p.
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The basic idea of the proof is to keep track of multiplicities when blowing up, allowing to pass to the
case where the linearization is non-zero, and case analysis of the vanishing orders along the exceptional
divisors allows to conclude. See [Br, §1] for details.

2 Foliations and curves
It is clear that a foliation interacts with curves on the surface, and in fact the intersection theory of the
line bundles associated to the foliation can be computed in terms of local invariants. In this section we
introduce two of these local invariants, and look at an example constraining a foliation using KF .

2.1 Tangency
For a curve which is not F -invariant, the local leaves of F intersect it non-degenerately, and we can ask
about the multiplicity of these intersections.

Definition 2.1. Suppose C is a curve, and p ∈ C. We define the tangency order of F to C at p as

tang(F , C, p) = dimC OX,p/(f, v(f)),

where f is a local equation defining C and v is the vector field generating F , viewed as a derivation. We
may then define the total tangency order of F along C:

tang(F , C) =
∑
p∈C

tang(F , C, p).

Remark. The component of C through p is F -invariant iff v(f) vanishes along it, i.e. is a multiple of f ,
and so tang(F , C, p) < ∞ iff this is not the case. If p /∈ Sing(F ) ∪ Sing(C) then tang(F , C, p) = 0 if F
and C are transverse at p, so the sum defining tang(F , C) is a finite sum provided C has no F -invariant
components.

Proposition 2.2. Suppose C has no F -invariant components. Then

TF · C = C · C − tang(F , C).

Proof. The local functions v(f) glue to give a global section of KF ⊗ O(C), since F is defined by a
T∨

F = KF -valued vector field and C is cut out by a O(−C)∨ = O(C)-valued function. The tangency
order tang(F , C, p) is precisely the vanishing order of v(f)|C at p, as

OX,p/(f, v(f)) = OC,p/(v(f)|C),

so
tang(F , C) = deg(KF ⊗O(C))|C = KF · C + C · C.

Remark. Note that the proof actually gives an equivalence with the divisor
∑

p∈C tang(F , C, p)p, which
is technically stronger than the equality of degrees if for example C is an elliptic curve.

Example 17. Consider the parallel foliation F on P2, generated by ∂
∂x on A2, and let C be the plane

curve y = xd. This is transverse to F except at the origin p = [0 : 0 : 1] and the point q = [0 : 1 : 0] at
infinity. In coordinates [x : 1 : z] the foliation is generated by ∂

∂x and C is given by zd−1 = xd, so we get

tang(F , C, p) = dimC C[x, y]/(y − xd,−dxd−1) = d− 1,

tang(F , C, q) = dimC C[x, z]/(zd−1 − xd,−dxd−1) = (d− 1)2.

On the other hand, from Example 4 we have TF = O(1), and O(C) = O(d), so

C · C − TF · C = d2 − d = (d− 1) + (d− 1)2

as expected.
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2.2 Vanishing order
For a curve C which is F -invariant, the 1-form defining F vanishes along the curve, and we can ask
about the order of this vanishing. Suppose f is a local equation defining C, and ω is the 1-form defining
F near p. Since ω vanishes on C, we can write g · ω = h · df + f · η for some holomorphic functions
g, h and 1-form η, where h may be assumed coprime to f , [Lin86]. (Roughly speaking this comes from
Ω1

C = OX/(f)⊗Ω1
X/(df).) The meromorphic function (h/g)|C is in fact independent of this decomposition,

being the residue of ω
f = h

g
df
f + η

g along C.

Definition 2.3. We define the vanishing index of F along C at p as

Z(F , C, p) = ordp

(
h

g

)∣∣∣∣
C

,

which is independent of the choice of defining equation f and 1-form ω since multiplication by a non-
vanishing holomorphic function does not affect vanishing order. We may then define the total vanishing
index of F along C:

Z(F , C) =
∑
p∈C

Z(F , C, p).

Remark. If p /∈ Sing(F ), then by Theorem 1.5 we may assume ω = df , so h/g = 1 and Z(F , C, p) = 0.
So really this index is an invariant of separatrices. This shows that the sum defining Z(F , C) is finite.

Remark. The meromorphic function h/g may actually have a pole at p, so that Z(F , C, p) is negative.
Consider the foliation given by ω = 7ydx− 4xdy, with separatrix cut out by f = x7 − y4. Then

ω =
xy · df − 4xdy · f

x4
,

so the index is the order of vanishing of y/x4−1 on C = {f = 0} at p = (0, 0). From the normalization
t 7→ (t4, t7) we compute Z(F , C, p) = 7− 4(4− 1) = −5. Fortunately this only occurs for singularities
with infinitely many separatrices (necessarily non-reduced), and when C is smooth we get agreement with
the Poincaré–Hopf index at p of the vector field generating the foliation; [Bru97].

Proposition 2.4. Suppose C is an F -invariant curve. Then

NF · C = C · C + Z(F , C).

Proof. The local 1-forms ω/f are globally valued in NF ⊗O(−C), and by taking residues along C the
local functions (h/g)|C glue to give a meromorphic section of (NF ⊗O(−C))|C . By definition we then
have

Z(F , C) = deg(NF ⊗O(−C))|C = NF · C − C · C.

Remark. As above, this proof actually gives an equivalence with the divisor
∑

p∈C Z(F , C, p)p.

2.3 A rational example
Suppose F is a foliation of P2, and suppose the tangency order tang(F , ℓ) is d for a general line ℓ. Then
Proposition 2.2 gives

KF · ℓ = d− ℓ · ℓ = d− 1, (∗)

so KF = O(d− 1). There is a natural tricohotomy between the case d = 0, where KF is negative, the
case d = 1, where KF is trivial, and the general case d ≥ 2. We will consider the case d = 0.

Specifically, we are assuming that the general line ℓ is transverse to F . In fact, by the formula (∗) applying
Proposition 2.2 again we have tang(F , ℓ) = 0 for any non-F -invariant line ℓ, so all non-F -invariant lines
are transverse to F . Now at any point in P2 which is not a singularity of F , there is a line through the
point sharing the tangent direction of F , which is by construction not transverse to F . This line must
be F -invariant, and so we see that F is a pencil of lines in P2.

So we have shown, a foliation of P2 with KF negative must be a pencil of lines (as in Example 3).
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3 Fibrations
In this section we look at a few examples of foliations arising from fibrations.

3.1 Algebraic integrability
It is a natural question to ask when the leaves of a foliation are algebraic curves. Examples we have seen
are xdy− ydx, with leaves ax+ by = 0 for [a : b] ∈ P1, and pxdy+ qydx for p, q ∈ N, with leaves xqyp = c
for c ∈ A1. Notice that xdy − ydx = y · d(x/y), and pxdy + qydx = d(xqyp)/(xq−1yp−1), so these are
examples of the following construction.

Definition 3.1. Given a rational map f : X 99K C, where X is a surface and C is a curve, the relative
tangent bundle TX/C defines a foliation on X which we call a fibration. The leaves of this fibration are
precisely the fibers of f , which are algebraic curves.

In the converse direction, there is a general statement which can be made:

Proposition 3.2. Suppose (X,F ) is a foliated surface, such that for a general x ∈ X the leaf of F
through x is algebraic. Then there exists a rational map X 99K Y such that TX/Y and TF are isomorphic
on a dense open subset of X.

Sketch proof. We consider the Hilbert scheme HilbX . Tangency to the foliation F is a condition on
subvarieties which cuts out a closed subscheme TX,F ⊆ HilbX . By assumption, the canonical map from
the universal family U over TX,F to X is dominant. Since U is an infinite disjoint union of projective
components, by the Baire category theorem we have some such component Z ⊂ U over Y ⊂ TX,F which
maps surjectively to X. After restricting to a suitable hyperplane Y 0 in Y , we get a finite surjection
Z0 → X, which lifts to a Galois covering Z̃0 → X, where the Galois group G can be made to act on a
base Ỹ 0.

Z̃0 Z0 U X

Ỹ 0 Y 0 TX

Galois

At this point we can collapse the fibers by taking the quotient Z̃0/G, which maps birationally to X, and
so we get a rational map X 99K Ỹ 0/G which by construction has fibers tangent to F .

3.2 Miyaoka’s criterion
We saw in Section 2.3 an example where KF being negative forces the foliation F to consist of rational
curves. We present a theorem due to Miyaoka which asserts a more general result of this form.

Theorem 3.3 (Miyaoka). Suppose (X,F ) is a foliated surface, and H is an ample divisor on X such
that KF ·H < 0. Then there is a birational morphism X̃ → X and a fibration f : X̃ → C such that the
general fiber of f is rational, and F is the foliation induced by f .

Proof (Bogomolov, McQuillan). By Bertini’s theorem, for n ≫ 0 we have some smooth curve C ∈ |nH|
which is disjoint from Sing(F ). Write Y = X × C, and consider the rank 1 foliation G on Y given by F
on each fiber. The diagonal D ⊂ C × C ⊂ Y is disjoint from Sing(G ), and integrating G at the points of
D gives a local analytic surface V through D.

Figure 10: The foliation G near D.
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By construction ND/V = TG |D, which is identified with TF |C , so degND/V = TF · C = nTF ·H > 0.
Hence ND/V is ample, and this forces the surface V to be algebraic by a theorem of Andreotti; see [Bos13,
Thm 3.4]. Write S for its Zariski closure. We have shown that the leaves of G through D are algebraic,
and hence the leaves of F are algebraic. By Proposition 3.2 this means that F is induced by a fibration,
and it suffices to show that the general fiber is rational.

We have a fibration f : S → C, inducing a foliation H on S which agrees with G locally around D.
The fibers of f are reduced, so KH = KS/C . Now by Fujita semipositivity, if the general fiber is not
rational then KS/C is a sum of a nef divisor and an effective disivor, and in particular KS/C is nef. But
KS/C ·D = KH ·D = KF ·C < 0, so the general fiber must be rational. Since the fibers of f correspond
to the leaves of F , we are done.

Remark. The condition in this theorem is necessary; suppose f : X → C is a fibration inducing a foliation
F whose general fiber is rational. Then KF = KX/C −D where D ≥ 0 is supported on fibers of f . If F
is a general fiber, then KF · F = KX · F = −2 by adjunction. Moreover F is nef, so if H is ample we
have that nF +H is also ample for n ≥ 0, while KF · (nF +H) = −2n+KF ·H is negative for n ≫ 0.

4 The Green–Griffiths conjecture and stability
We introduce the Green–Griffiths conjecture, and sketch some of the ideas due to Bogomolov and
McQuillan applying the theory of foliations to the problem. Motivated by an example of these ideas, we
digress into a discussion of some basic concepts of slope stability for sheaves.

4.1 The Green–Griffiths conjecture
The Green–Griffiths conjecture concerns the transcendental geometry of general type varieties.

Conjecture (Green–Griffiths, [GG80]). Let X be a smooth complex projective variety of general type.
Then X admits no Zariski dense entire holomorphic curves.

There is a more general form of the conjecture, as follows:

Conjecture (Green–Griffiths–Lang, [Lan86]). Let X be a smooth complex projective variety of general
type. There is a proper algebraic subvariety Y ⊂ X such that every entire holomorphic curve f : C → X
factors through Y .

We are considering a holomorphic map f : C → X, which induces also a map df : C → P(TX). Writing
O(−1) for the relative tautological bundle on P(TX), we have (tautologically) (df)∗O(−1) = TC . Now
suppose O(1) is big. This assumption is intended as an approximation of the condition of being general
type. We may find an effective divisor D ≥ 0 in P(TX) representing O(1), which is locally a section of
the bundle over X, although possibly not globally. Up to finite degree issues, this gives a rational section
of P(TX), which as mentioned earlier is precisely the data of a foliation on X, call it F .

Now from (df)∗O(−1) = TC we get (df)∗O(1) = KC = 2g(C)− 2, so if C is rational C ·D < 0. But this
forces C to be a component of D, and so in fact F is tangent to C. In other words, from the assumption
that O(1) is big we have produced a foliation on X which is tangent to every rational curve in X. The
existence of such a foliation is a strong constraint, and this argument is part of work due to Bogomolov
and McQuillan [M98] which lead to certain restricted results related to the conjecture.

4.2 Ample vector bundles
We would like to better understand this condition of OP(TX)(1) being big in terms of X and TX directly.
It turns out to be equivalent to a notion of “ample” for the vector bundle TX .

Proposition 4.1 ([Har66], 3.2). Let E be a vector bundle on a variety X. Then E is an ample vector
bundle on X iff the tautological line bundle OP(E∨)(1) on P(E∨) is ample.

We recall from [Har66] the notion of an ample vector bundle:

Definition 4.2. We say a vector bundle E over a variety X is ample if for any coherent sheaf F the
sheaf F ⊗ Symn E is generated by global sections for n ≫ 0.
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Remark. When E = L is a line bundle we have Symn L = L⊗n, so this recovers the definition of ample
for line bundles.

Remark. Motivated by the analogous statement for line bundles, one might ask whether this definition is
equivalent to requiring Symn E to give an embedding into the corresponding Grassmannian for n ≫ 0. In
fact this is not true: take for example O⊕O(1) on P1. This is not ample, since O(−1)⊗ Symn(O⊕O(1))
has a summand of O(−1) for all n ≥ 0. However, the complete system (1⊕ 0, 0⊕ x, 0⊕ y) induces an
embedding P1 ↪→ Gr(2,C3); [x : y] 7→ ⟨(1, 0, 0), (0, x, y)⟩.

The key point to proving Proposition 4.1 is the following fact:

Lemma 4.3. If p : P(E∨) → X is the projection map, then for every coherent sheaf F on X we have

Rp∗(p
∗F ⊗OP(E∨)(n)) = F ⊗ Symn(E).

Proof. By the projection formula we have

Rp∗(p
∗F ⊗OP(E∨)(n)) = F ⊗L Rp∗OP(E∨)(n),

and Rp∗OP(E∨)(n) = Symn E as a relative version of

Hk(OP(V )(n)) =

{
Symn V ∨ k = 0, n ≥ 0,
0 otherwise.

Motivated by the construction in the previous section, suppose we want to construct a general type
surface X such that OP(TX)(1) is big. From Proposition 4.1, this is equivalent to requiring that TX is
ample. We will consider a degree d hypersurface in P3. There is the normal bundle exact sequence

0 → N∨
X/P3 → Ω1

P3 |X → Ω1
X → 0,

and NX/P3 = O(−d) by adjunction. Taking determinants we see that O(−4) = KP3 = KX ⊗O(−d), so
at least detΩ1

X = KX is ample for d ≫ 0. It is not true that a vector bundle with ample determinant
bundle is always itself ample (although the converse holds). However, in this particular case we can try
to apply the following result:

Theorem 4.4 ([FL22], 3.10). If E is a slope semistable vector bundle, and the discriminant

∆(E) = 2 rank E · c2(E)− (rank E − 1)c1(E)2

is zero, then E is ample iff det E is ample.

We will see in the next section that Ω1
X is slope semistable (in fact slope stable), after first introducing

the notion of slope stability. However, in computing the discriminant we find

∆(Ω1
X) = 4c2(X)− c1(X)2

= 4χ(X)−KX ·KX

= 4χ(X)− d(d− 4)2.

In fact χ(X) = d(d2 − 4d+ 6) [Max24], giving ∆(Ω1
X) = 3d2 − 8d+ 8. This is positive for all d, and so

unfortunately the theorem doesn’t apply in our example.

Example 18. For an example where det E is ample but E is not ample, consider E = O(−1)⊕O(2) on P1.
Then det E = O(1) is clearly ample, but E cannot be ample as the summand O(−1) is not ample.

Remark. To see that det E is ample whenever E is ample, note that Symn E is ample and generated by
global sections for n ≫ 0. Tensoring with a globally generated sheaf preserves ampleness, so (Symn E)⊗r

is ample, and hence the quotient ∧r Symn E = det(Symn E) is also ample. But this line bundle is acted
on by GL(E), and the only characters of GL are powers of the determinant, so det(Symn E) = (det E)⊗m

for some m. Hence det E is ample.
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4.3 Slope stability
The notion of slope stability is motivated by the application of Mumford’s geometric invariant theory
in the construction of moduli spaces of sheaves; it gives restricted classes of sheaves for which we can
construct well-behaved moduli spaces via Grothendieck’s Quot construction.

Definition 4.5. Suppose X is a complex projective variety, with ample line bundle O(1). For a torsion-free
coherent sheaf E on X, we define the slope of E to be

µ(E) = deg E/ rank E ,

where deg E/(dimX)! is the coefficient of mdimX in the Hilbert polynomial m 7→ χ(E ⊗O(m)). We say E
is slope semistable if for any subsheaf F ⊂ E with 0 < rankF < rank E we have µ(F) ≤ µ(E), and stable
if the inequality is strict. A direct sum of stable sheaves of the same slope is called polystable.

We will only be considering slope stability, and so we drop the slope prefix and write simply “E is
(semi/poly)stable”.

Remark. Line bundles are trivially stable, having no subsheaves of smaller rank.

4.3.1 Relation to ample vector bundles

To apply Proposition 4.1 in the situation of Ω1
X above, we appeal to two major theorems:

Theorem 4.6 (Aubin [Aub82], Yau [Yau78]). For a general type smooth complex projective variety, the
tangent bundle admits a Kähler–Einstein metric.

Theorem 4.7 ([Kob87], [Lüb83]). If the tangent bundle of a smooth complex projective variety admits a
Kähler–Einstein metric, then it is stable.

The stability of a vector bundle is equivalent to stability of its dual (Proposition 4.11), so these results
imply stability of Ω1

X in our example earlier.

4.3.2 The Donaldson–Uhlenbeck–Yau Theorem

A key theorem in the theory of slope stability is the following theorem, formerly known as the Calabi
conjecture.

Theorem 4.8 (Donaldson–Uhlenbeck–Yau). If X is a smooth complex projective manifold, then a
holomorphic vector bundle E on X is polystable iff it admits a Hermite–Einstein metric.

Definition 4.9. On a compact Kähler manifold (X,ω) with a holomorphic vector bundle E , a Hermitian
metric h on E is Hermite–Einstein if its Chern connection A has curvature FA satisfying

FA ∧ ωdimX−1 = λ · (idE ⊗ ωdimX)

for some λ ∈ C.

In fact the constant λ is geometrically constrained:

deg E =

∫
X

c1(E) ∧ ωdimX−1

=
i

2π

∫
X

tr(FA) ∧ ωdimX−1

=
i

2π
λ rank E vol(X),

so λ = −2πiµ(E)/ vol(X), which indicates how slope stability might be related. Indeed, the existence
of a Hermite–Einstein metric given polystability is the hard part of the theorem; the other direction is
relatively easy.

We now turn to look at some basic properties of stability.

Proposition 4.10. A torsion-free coherent sheaf E is stable iff E ⊗ L is stable for any line bundle L.
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Proof. Any subsheaf of E⊗L is of the form F⊗L for a subsheaf F of E since −⊗L is an exact equivalence,
so this follows from the formula

µ(F ⊗ L) = µ(F) + deg(L).

Proposition 4.11. A vector bundle E is stable iff E∨ is stable.

Proof. Since E = E∨∨, it suffices to prove the forward implication. Now E∨ = E ⊗ (det E)∨, since a volume
form defines a perfect pairing E ⊗ E → C, so the result follows from Proposition 4.10.

Proposition 4.12. If
0 → E ′ → E → E ′′ → 0

is a short exact sequence of torsion-free coherent sheaves, then

min{µ(E ′), µ(E ′′)} ≤ µ(E) ≤ max{µ(E ′), µ(E ′′)},

with equality at either end iff µ(E ′) = µ(E) = µ(E ′′) or one of E ′ and E ′′ vanishes.

Proof. Recall that degree and rank are additive in exact sequences. Hence

µ(E) = deg E ′ + deg E ′′

rank E ′ + rank E ′′ =
rank E ′

rank E ′ + rank E ′′ · µ(E
′) +

rank E ′′

rank E ′ + rank E ′′ · µ(E
′′),

which is a positive weighted average of total weight 1. If the endpoints of the average are distinct, we can
only have an equality if one of the weights vanishes.

Proposition 4.13. A torsion-free coherent sheaf E is semistable (resp. stable) iff for all quotients G of E
with 0 < rankG < rank E we have µ(G) ≥ µ(E) (resp. µ(G) > µ(E)).

Proof. This is immediate from Proposition 4.12.

Proposition 4.14. If
0 → E ′ → E → E ′′ → 0

is a short exact sequence of nonzero torsion-free coherent sheaves with µ(E ′) = µ(E) = µ(E ′′), then E is
semistable iff E ′ and E ′′ are both semistable.

Proof. If E is semistable then E ′ is semistable by transitivity of subsheaves, and similarly for E ′′ using
Proposition 4.13. For the converse, assume E ′ and E ′′ are semistable, and F is a subsheaf of E . We have

0 E ′ E E ′′ 0

0 F ′ F F ′′ 0,

where F ′ = E ′ ∩ F . If F ′ = 0 then µ(F) = µ(F ′′) ≤ µ(E ′′) = µ(E), and similarly for F ′′ = 0. Otherwise
µ(F ′) ≤ µ(E ′) = µ(E), and similarly for F ′′, so µ(F) ≤ µ(E) by Proposition 4.12.

Corollary 4.15. If E , E ′ are semistable with the same slope, then E ⊕ E ′ is also semistable with that
same slope. Hence polystable implies semistable.

Remark. If µ(E) ̸= µ(E ′), then E ⊕ E ′ is not semistable in general. For example, consider O⊕O(1) on P1.
We have µ(O ⊕O(1)) = 1/2, while µ(O(1)) = 1.

We conclude by noting the following innocuous-looking fact.

Theorem 4.16 (Narasimhan–Sedhadri [NS65]). If E , E ′ are semistable vector bundles, then so is E ⊗ E ′.

This fact can be seen from the Donaldson–Uhlenbeck–Yau Theorem, because tensor products of Hermite–
Einstein metrics are again Hermite–Einstein; for h = h1 ⊗h2 we have FA = FA1 ⊗ 1+ 1⊗FA2 . For a long
time there have been no elementary approaches found for proving this theorem, and it is worth noting
that the statement fails in positive characteristic even for curves. See [Mac18] for a nice exposition on the
context of this tensor product theorem, and the relation to representation theory.
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